Publications by authors named "Oliver Y-H Tai"

The power dependence of the optical poling process of a new azo chromophore in the polymethylmethacrylate matrix at room temperature has been investigated. The existing theory is found to be inconsistent with the experiment. A simple model based on the rate equation is proposed to describe the writing process of the chromophore/polymer system.

View Article and Find Full Text PDF

We have provided a model to interpret the non-quadratic-intensity dependence behavior commonly observed in the two-photon fluorescence (TPF) experiment excited with high laser intensity. The model also provides one with a different technique to measure the two-photon absorption cross section of an organic chromophore in solution. In contrast to the commonly used low intensity technique that depends on the quadratic-intensity law, the present technique is based on the non-quadratic-intensity dependence of two-photon fluorescence.

View Article and Find Full Text PDF

One-, two-, and three-photon absorption induced fluorescence intensities of a novel nonlinear optical chromophore have been measured by using a tunable femtosecond pulsed laser as the excitation. Four resonance peaks are observed as the excitation wavelength is tuned from 600 to 2000 nm. These peaks correspond to the one-, two- and three-photon fluorescence resonance.

View Article and Find Full Text PDF

The frequency dependence of the first molecular hyperpolarizability of a dendrimer incorporated with thiophene-stilbene based charge-transfer chromophores is investigated by using a nanosecond 1907 nm laser and a number of wavelengths ranging from 1160 to 1760 nm emitted from an optical parametric amplifier pumped by a 1 kHz 130 fs Ti:sapphire laser. The measured hyperpolarizabilities are compared with those calculated from the charge-transfer absorption spectrum involving a Kramers-Kronig transformation scheme. The Kramers-Kronig transformation analysis provides a satisfactory account of the dispersion of the first molecular hyperpolarizability over the entire excitation wavelength range measured.

View Article and Find Full Text PDF