Publications by authors named "Oliver Wessely"

Background: Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in or . Yet, disease expression is highly variable and includes very early-onset PKD presentations or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD.

View Article and Find Full Text PDF

Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls.

View Article and Find Full Text PDF

As the population in many industrial countries is aging, the risk, incidence, and prevalence of CKD increases. In the kidney, advancing age results in a progressive decrease in nephron number and an increase in glomerulosclerosis. In this review, we focus on the effect of aging on glomerular podocytes, the post-mitotic epithelial cells critical for the normal integrity and function of the glomerular filtration barrier.

View Article and Find Full Text PDF

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood.

View Article and Find Full Text PDF

The establishment of the left-right asymmetry in vertebrate animals is orchestrated by a series of tightly regulated events. In this issue of Developmental Cell, Tanaka et al. provide a tantalizing model to show how fluid flow in the mouse ventral node becomes integrated in a molecular cellular signature of asymmetry.

View Article and Find Full Text PDF

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging.

View Article and Find Full Text PDF

The majority of podocyte disorders are progressive in nature leading to chronic kidney disease and often kidney failure. The scope of current therapies is typically nonspecific immunosuppressant medications, which are accompanied by unwanted and serious side effects. However, many exciting clinical trials are underway to reduce the burden of podocyte diseases in our patients.

View Article and Find Full Text PDF

Podocytes undergo defined morphologic changes during development, homeostasis, and aging, and on injury. Quantitative podometric assessments of podocyte endowment provide a powerful tool to interrogate glomerular health. Expanding this approach to a regional assessment demonstrates that the podocytes from cortical, subcortical, and juxtamedullary glomeruli are not only morphologically heterogeneous per se, but respond differently to stressors, such as age and hypertension.

View Article and Find Full Text PDF

With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2).

View Article and Find Full Text PDF

Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC).

View Article and Find Full Text PDF

Regenerative repair following injury to proximal tubular epithelial cells (PTECs) is essential to restore the kidney to normal function in acute kidney injury. Failure to accomplish this leads to chronic kidney disease. Expression of the paired-box transcription factor Pax2 in PTECs is required for their regenerative proliferation and repair.

View Article and Find Full Text PDF

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes.

View Article and Find Full Text PDF

Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient.

View Article and Find Full Text PDF

Background: Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy.

Methods: In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer.

View Article and Find Full Text PDF

Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 () gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV.

View Article and Find Full Text PDF

Breast cancer is the most prevalent malignancy and second leading cause of death in women worldwide, with hormone receptor-positive luminal breast cancers being the most widespread subtype. While these tumors are generally amenable to endocrine therapy, cellular heterogeneity and acquired ability of tumor cells to undergo cell state switching makes these populations difficult to be fully targeted and eradicated through conventional methods. We have leveraged a quality-by-design (QbD) approach that integrates biological responses with predictive mathematical modeling to identify key combinations of commercially available drugs to induce estrogen receptor expression for therapeutic targeting.

View Article and Find Full Text PDF

Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) affects one million people in the US. Ulcerative colitis (UC) is a subtype of IBD that can lead to colitis-associated cancer (CAC). In UC, the rate of CAC is 3-5-fold greater than the rate of sporadic colorectal cancer (CRC).

View Article and Find Full Text PDF

The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is caused by inactivating mutations in (85%) or (15%). The ADPKD proteins encoded by these genes, polycystin-1 (PC1) and polycystin-2 (PC2), form a plasma membrane receptor-ion channel complex. However, the mechanisms controlling the subcellular localization of PC1 and PC2 are poorly understood.

View Article and Find Full Text PDF