Artificial lattices constructed from individual dopant atoms within a semiconductor crystal hold promise to provide novel materials with tailored electronic, magnetic, and optical properties. These custom-engineered lattices are anticipated to enable new, fundamental discoveries in condensed matter physics and lead to the creation of new semiconductor technologies including analog quantum simulators and universal solid-state quantum computers. This work reports precise and repeatable, substitutional incorporation of single arsenic atoms into a silicon lattice.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2023
We investigate the adsorption and thermal decomposition of triphenyl bismuth (TPB) on the silicon (001) surface using atomic-resolution scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, and density functional theory calculations. Our results show that the adsorption of TPB at room temperature creates both bismuth-silicon and phenyl-silicon bonds. Annealing above room temperature leads to increased chemical interactions between the phenyl groups and the silicon surface, followed by phenyl detachment and bismuth subsurface migration.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices.
View Article and Find Full Text PDFThe adsorption configurations of a technologically relevant model organic adsorbate on the silicon (001) surface were studied using energy scanned x-ray photoelectron diffraction (PhD). Previous work has established the existence of an interesting vertically-aligned ('flagpole') configuration, where the acetophenone attaches to Si(001) via the acetyl group carbon and oxygen atoms. Density functional theory calculations have predicted two energetically similar variants of this structure, where the phenyl ring is orientated parallel or perpendicular to the rows of silicon dimers on this reconstructed surface.
View Article and Find Full Text PDFOver the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored.
View Article and Find Full Text PDFExtending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D).
View Article and Find Full Text PDFWe investigate the chemical and structural configuration of acetophenone on Si(0 0 1) using synchrotron radiation core-level spectroscopy techniques and density functional theory calculations. Samples were prepared by vapour phase dosing of clean Si(0 0 1) surfaces with acetophenone in ultrahigh vacuum. Near edge x-ray absorption fine structure spectroscopy and photoelectron spectroscopy measurements were made at room temperature as a function of coverage density and post-deposition anneal temperature.
View Article and Find Full Text PDFBy suppressing an undesirable surface Umklapp process, it is possible to resolve the two most occupied states (1Γ and 2Γ) in a buried two-dimensional electron gas (2DEG) in silicon. The 2DEG exists because of an atomically sharp profile of phosphorus dopants which have been formed beneath the Si(001) surface (a δ-layer). The energy separation, or valley splitting, of the two most occupied bands has critical implications for the properties of δ-layer derived devices, yet until now, has not been directly measurable.
View Article and Find Full Text PDFAssembling molecular components into low-dimensional structures offers new opportunities for nanoscale device applications. Here we describe the self-assembly of indium atoms into metallic chains on the silicon (001) surface using adsorbed benzonitrile molecules as nucleation and termination sites. Critically, individual benzonitrile adsorbates can be manipulated using scanning tunneling microscopy.
View Article and Find Full Text PDFThe ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope can manipulate individual atoms and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based strategies have allowed the formation of atomic-scale structures on silicon surfaces, but the fabrication of working devices-such as transistors with extremely short gate lengths, spin-based quantum computers and solitary dopant optoelectronic devices-requires the ability to position individual atoms in a silicon crystal with atomic precision.
View Article and Find Full Text PDFIt has been observed in scanning tunneling microscopy (STM) that the adsorption of molecules on the (001) surface of a Group IV semiconductor can lead to an asymmetric ordering of the dimers immediately adjacent to the adsorbate. This so-called pinning may occur along the dimer row on only one, or both sides of the adsorbate. Here we present a straightforward methodology for predicting such pinning and illustrate this approach for several different adsorbate structures on the Si(001) surface.
View Article and Find Full Text PDFWithin a full density functional theory framework we calculate the band structure and doping potential for phosphorus δ-doped silicon. We compare two different representations of the dopant plane; pseudo-atoms in which the nuclear charge is fractional between silicon and phosphorus, and explicit arrangements employing distinct silicon and phosphorus atoms. While the pseudo-atom approach offers several computational advantages, the explicit model calculations differ in a number of key points, including the valley splitting, the Fermi level and the width of the doping potential.
View Article and Find Full Text PDFUsing density functional theory, we report detailed reaction path calculations for the reaction of acetone with the silicon (001) surface. We identify the key reaction intermediates of dissociative adsorption and the transition states between them. This resolves the identity of the one-dimer intermediate observed in STM experiments and its role in the formation of several two-dimer-wide end products of dissociation.
View Article and Find Full Text PDFA detailed atomic-resolution scanning tunneling microscopy (STM) and density functional theory study of the adsorption, dissociation, and surface diffusion of phosphine (PH(3)) on Si(001) is presented. Adsorbate coverages from approximately 0.01 monolayer to saturation are investigated, and adsorption is performed at room temperature and 120 K.
View Article and Find Full Text PDFWe report the solution of the c(4 x 2) reconstruction of SrTiO(3) (001), obtained through a combination of high-resolution transmission electron microscopy, direct methods analysis, and density functional theory. The structure is characterized by a single overlayer of TiO(2) stoichiometry in which TiO(5) polyhedra are arranged into edge-shared structures, in contrast to the corner-shared TiO(6) polyhedra in bulk. This structural pattern is similar to that reported by us earlier for the (2 x 1) reconstruction of the same crystal face formed at higher temperature.
View Article and Find Full Text PDFOxide surfaces are important for applications in catalysis and thin film growth. An important frontier in solid-state inorganic chemistry is the prediction of the surface structure of an oxide. Comparatively little is known about atomic arrangements at oxide surfaces at present, and there has been considerable discussion concerning the forces that control such arrangements.
View Article and Find Full Text PDF