Publications by authors named "Oliver Van Kaick"

The interpretation of colors in visualizations is facilitated when the assignments between colors and concepts in the visualizations match human's expectations, implying that the colors can be interpreted in a semantic manner. However, manually creating a dataset of suitable associations between colors and concepts for use in visualizations is costly, as such associations would have to be collected from humans for a large variety of concepts. To address the challenge of collecting this data, we introduce a method to extract color-concept associations automatically from a set of concept images.

View Article and Find Full Text PDF

We present a neural optimization model trained with reinforcement learning to solve the coordinate ordering problem for sets of star glyphs. Given a set of star glyphs associated to multiple class labels, we propose to use shape context descriptors to measure the perceptual distance between pairs of glyphs, and use the derived silhouette coefficient to measure the perception of class separability within the entire set. To find the optimal coordinate order for the given set, we train a neural network using reinforcement learning to reward orderings with high silhouette coefficients.

View Article and Find Full Text PDF

We introduce a modeling tool which can evolve a set of 3D objects in a functionality-aware manner. Our goal is for the evolution to generate large and diverse sets of plausible 3D objects for data augmentation, constrained modeling, as well as open-ended exploration to possibly inspire new designs. Starting with an initial population of 3D objects belonging to one or more functional categories, we evolve the shapes through part recombination to produce generations of hybrids or crossbreeds between parents from the heterogeneous shape collection.

View Article and Find Full Text PDF

We present a method for data sampling in scatterplots by jointly optimizing point selection for different views or classes. Our method uses space-filling curves (Z-order curves) that partition a point set into subsets that, when covered each by one sample, provide a sampling or coreset with good approximation guarantees in relation to the original point set. For scatterplot matrices with multiple views, different views provide different space-filling curves, leading to different partitions of the given point set.

View Article and Find Full Text PDF

Rationale And Objectives: Supraspinatus muscle disorders are frequent and debilitating, resulting in pain and a limited range of shoulder motion. The gold standard for diagnosis involves an invasive surgical procedure. As part of a proposed clinical workflow for noninvasive computer-aided diagnosis (CAD) of the condition of the supraspinatus, we present a method to classify three-dimensional shapes of the muscle into relevant pathology groups, based on magnetic resonance (MR) images.

View Article and Find Full Text PDF