Bromoenynamides represent precursors to a diversity of azacycles by a cascade sequence of carbopalladation followed by cross-coupling/electrocyclization, or reduction processes. Full details of our investigations into intramolecular ynamide carbopalladation are disclosed, which include the first examples of carbopalladation/cross-coupling reactions using potassium organotrifluoroborate salts; and an understanding of factors influencing the success of these processes, including ring size, and the nature of the coupling partner. Additional mechanistic observations are reported, such as the isolation of triene intermediates for electrocyclization.
View Article and Find Full Text PDFPalladium-catalyzed cascade cyclization of bromoenynamides equipped with an additional alkyne or ynamide substituent affords azatricyclic products. Using 5- to 7-membered ring tethers, this chemistry offers a regiospecific route to highly-functionalized azacycles. Elaboration to the trikentrin B skeleton is achieved from the arylsilane cyclization products.
View Article and Find Full Text PDFCascade reactions: A modular assembly of azabicycles by using a cascade cyclization/Suzuki coupling/6π-electrocyclization of bromoenynamides is reported. The reaction offers a wide substituent scope on the bicyclic aminodiene products, which can be selectively oxidized as a general approach to aromatic azabicycles.
View Article and Find Full Text PDF