Publications by authors named "Oliver Spott"

Microbial mats, due to stratification of the redox zones, have a potential to include a complete N cycle, however an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico under oxic and anoxic conditions using N-labeling techniques. All of the major N transformation pathways, with the exception of anammox, were detected in both microbial mats.

View Article and Find Full Text PDF

Root growth responds to local differences in N-form and concentration. This is known for artificial systems and assumed to be valid in soil. The purpose of this study is to challenge this assumption for soil mesocosms locally supplied with urea with and without nitrification inhibitor.

View Article and Find Full Text PDF

Nitrous oxide (NO) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of NO emissions with nitrogen fertilizer application being the main driver of rising atmospheric NO concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate NO emissions from soils.

View Article and Find Full Text PDF

We applied a (15)N dilution technique called "Integrated Total Nitrogen Input" (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.

View Article and Find Full Text PDF

Constructed wetlands are important ecosystems with respect to nitrogen cycling. Here we studied the activity and abundance of nitrogen transforming bacteria as well as the spatial distribution of nitrification, anaerobic ammonium oxidation (anammox), and denitrification processes in a horizontal subsurface-flow constructed wetland. The functional genes of the nitrogen cycle were evenly distributed in a linear way along the flow path with prevalence at the superficial points.

View Article and Find Full Text PDF

Denitrification is well known being the most important nitrate-consuming process in water-logged peat soils, whereby the intermediate compound nitrous oxide (N(2)O) and the end product dinitrogen (N(2)) are ultimately released. The present study was aimed at evaluating the release of these gases (due to denitrification) from a nutrient-poor transition bog ecosystem under drained and three differently rewetted conditions at the field scale using a (15)N-tracer approach ([(15)N]nitrate application, 30 kg N ha(-1)) and a common closed-chamber technique. The drained site is characterized by a constant water table (WT) of -30 cm (here referred to as D30), while rewetted sites represent a constant WT of -15 cm, a constant WT of 0 cm (i.

View Article and Find Full Text PDF

We followed the abundance and compared the diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the groundwater of two superimposed pristine limestone aquifers located in the Hainich region (Thuringia, Germany) over 22 months. Groundwater obtained from the upper aquifer (12 m depth) was characterized by low oxygen saturation (0-20%) and low nitrate concentrations (0-20 μM), contrasting with 50-80% oxygen saturation and 40-200 μM nitrate in the lower aquifer (48 m and 88 m depth). Quantitative PCR targeting bacterial and archaeal amoA and 16S rRNA genes suggested a much higher ammonia oxidizer fraction in the lower aquifer (0.

View Article and Find Full Text PDF

The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g.

View Article and Find Full Text PDF

Under natural conditions, peatlands are generally nitrate-limited. However, recent concerns about an additional N input into peatlands by atmospheric N deposition have highlighted the risk of an increased denitrification activity and hence the likelihood of a rise of emissions of the greenhouse gas nitrous oxide. Therefore, the aim of the present study was to investigate the turnover of added nitrate in a drained and a rewetted peatland using a [(15)N]nitrate-bromide double-tracer method.

View Article and Find Full Text PDF

Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer.

View Article and Find Full Text PDF

On the basis of the principle of reaction continuous-flow quadrupole mass spectrometry, an automated sample preparation unit for inorganic nitrogen (SPIN) species was developed and coupled to a quadrupole Mass Spectrometer (MAS). The SPINMAS technique was designed for an automated, sensitive, and rapid determination of 15N abundance and concentration of a wide variety of N-species involved in nitrogen cycling (e.g.

View Article and Find Full Text PDF

Denitrification and anaerobic ammonium oxidation (anammox) have been identified as biotic key processes of N2 formation during global nitrogen cycling. Based on the principle of a 15N tracer technique, new analytical expressions have been derived for a calculation of the fractions of N2 simultaneously released by anammox and denitrification. An omnipresent contamination with atmospheric N2 is also taken into account and is furthermore calculable in terms of a fraction.

View Article and Find Full Text PDF

N2 is one of the major gaseous nitrogen compounds released by soils due to N-transformation processes. Since it is also the major constituent of the earth's atmosphere (78.08% vol.

View Article and Find Full Text PDF