Intense bombardment of solar system planets in the immediate aftermath of protoplanetary disk dissipation has played a key role in their atmospheric evolution. During this epoch, energetic collisions will have removed substantial masses of gas from rocky planet atmospheres. Noble gases are powerful tracers of this early atmospheric history, xenon in particular, which on Mars and Earth shows significant depletions and isotopic fractionations relative to the lighter noble gasses.
View Article and Find Full Text PDFGiant impacts can generate transient hydrogen-rich atmospheres, reducing atmospheric carbon. The reduced carbon will form hazes that rain out onto the surface and can become incorporated into the crust. Once heated, a large fraction of the carbon is converted into graphite.
View Article and Find Full Text PDFThe release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust.
View Article and Find Full Text PDFThe lavas associated with mantle plumes may sample domains throughout Earth's mantle and probe its dynamics. However, plume studies are often only able to take snapshots in time, usually of the most recent plume activity, leaving the chemical and geodynamic evolution of major convective upwellings in Earth's mantle poorly constrained. Here, we report the geodynamically key information of how the lithology and density of a plume change from plume head phase to tail.
View Article and Find Full Text PDFLife in the clouds of Venus, if present in sufficiently high abundance, must be affecting the atmospheric chemistry. It has been proposed that abundant Venusian life could obtain energy from its environment using three possible sulfur energy-metabolisms. These metabolisms raise the possibility of Venus's enigmatic cloud-layer SO-depletion being caused by life.
View Article and Find Full Text PDFCompartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants.
View Article and Find Full Text PDFThe differentiation of Earth ~4.5 billion years (Ga) ago is believed to have culminated in magma ocean crystallization, crystal-liquid separation, and the formation of mineralogically distinct mantle reservoirs. However, the magma ocean model remains difficult to validate because of the scarcity of geochemical tracers of lower mantle mineralogy.
View Article and Find Full Text PDFGeochem Geophys Geosyst
December 2018
The observed variability of trace-element concentration in basaltic lavas and melt inclusions carries information about heterogeneity in the mantle. The difficulty is to disentangle the contributions of source heterogeneity (i.e.
View Article and Find Full Text PDFThere are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems.
View Article and Find Full Text PDF