The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles.
View Article and Find Full Text PDFAs our understanding of the complex network of regulatory pathways for gene expression continues to grow, avenues of investigation for how these new findings can be utilised in therapeutics are emerging. The recent growth of interest in the RNA binding protein (RBP) interactome has revealed it to be rich in targets linked to, and causative of diseases. While this is, in and of itself, very interesting, evidence is also beginning to arise for how the RBP interactome can act to modulate the response of diseases to existing therapeutic treatments, especially in cancers.
View Article and Find Full Text PDFGenomic analysis has found that the transcriptome in both humans and features large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs regulates gene expression in diverse ways and has been involved in a large variety of important biological functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human diseases, including cancer.
View Article and Find Full Text PDF