Publications by authors named "Oliver Renner"

Purpose: Sandoz biosimilar denosumab (GP2411 [SDZ-deno]; Jubbonti/Wyost) is approved by the US FDA, EMA and Health Canada for all indications of reference denosumab (REF-deno; Prolia/Xgeva), a fully human IgG2κ monoclonal antibody that binds with high affinity and specificity to receptor activator of nuclear factor kappa-B ligand (RANKL). Denosumab blocks RANKL, preventing bone resorption and loss of bone density/architecture in conditions characterized by excessive bone loss such as osteoporosis in postmenopausal women and metastatic bone disease, among others.

Methods: This narrative review summarizes the totality of evidence (ToE) for SDZ-deno that supported its approval as Jubbonti/Wyost in the EU and US.

View Article and Find Full Text PDF

The PIM proteins, which were initially discovered as proviral insertion sites in Moloney-murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anti-cancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim, and a third group of genes (including bmi1 and gfi1) as complementing genes in lymphomagenesis.

View Article and Find Full Text PDF

The Pim proteins are a family of highly homologous protein serine/threonine kinases that have been found to be overexpressed in cancer. Elevated levels of Pim1 kinase were first discovered in human leukemia and lymphomas. However, more recently Pim1 was found to be increased in solid tumors, including pancreatic and prostate cancers, and has been proposed as a prognostic marker.

View Article and Find Full Text PDF

Elevated expression of AKT has been noted in a significant percentage of primary human breast cancers, mainly as a consequence of the PTEN/PI3K pathway deregulation. To investigate the mechanistic basis of the AKT gain of function-dependent mechanisms of breast tumorigenesis, we explored the phenotype induced by activated AKT transgenes in a quantitative manner. We generated several transgenic mice lines expressing different levels of constitutively active AKT in the mammary gland.

View Article and Find Full Text PDF

Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation.

View Article and Find Full Text PDF

Deregulation of the PI3K pathway is common in human cancer. The basic players in this pathway are the kinases PI3K and AKT and the phosphatase PTEN. This review will summarize some of the key animal models that have helped us understand this signaling network and its contribution to tumorigenesis.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3K) constitute important regulators of various signaling pathways with relevance in cancer. Enhanced activation of p110alpha, the catalytic subunit of PI3K, was found in a high proportion of many human tumor types. We generated a mouse model in which PI3K is activated by forced recruitment of p110alpha to the membrane.

View Article and Find Full Text PDF

The focus on targeted therapies has been fuelled by extensive research on molecular pathways and their role in tumorigenesis. Novel models of human cancer have been created to evaluate the role of specific genes in the different stages of cancer. Currently, mouse modelling of human cancer is possible through the expression of oncogenes, specific genetic mutations or the inactivation of tumour suppressor genes, and these models have begun to provide us with an understanding of the molecular pathways involved in tumour initiation and progression at the physiological level.

View Article and Find Full Text PDF

PTEN/PI3K/AKT constitutes an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase which main substrate is the phosphatidyl-inositol,3,4,5 triphosphate (PIP3), the product of PI3K. Increase in PIP3 recruits AKT to the membrane where it is activated by other kinases also dependent on PIP3.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3Ks) constitute important regulators of signaling pathways. The PIK3CA gene encoding the p110-alpha catalytic subunit represents one of the highly mutated oncogenes identified in human cancer. Here, we report new markers for in vivo PI3K activation in prostate.

View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT constitute an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase and its main substrate phosphatidyl-inositol 3,4,5 triphosphate (PIP3) is the product of PI3K. Increase in PIP3 recruits AKT to the membrane where is activated by other kinases also dependent on PIP3.

View Article and Find Full Text PDF

AKT1/PKB is a serine/threonine protein kinase that regulates biological processes such as proliferation, apoptosis and growth in a variety of cell types. To assess the oncogenic capability of an activated form of AKT in vivo we have generated several transgenic mouse lines that overexpress in the mammary epithelium the murine Akt1 gene modified with a myristoylation signal, which renders active this protein by localizing it to the plasma membrane. We demonstrate that expression of myristoylated AKT in the mammary glands increases the susceptibility of these mice to the induction of mammary tumors of epithelial origin by the carcinogen 9,10-dimethyl-1,2 benzanthracene (DMBA).

View Article and Find Full Text PDF

Deregulation of the G1-S transition of the cell cycle is a common feature of human cancer. Tumor-associated alterations in this process frequently affect cyclin-dependent kinases (Cdk), their regulators (cyclins, INK4 inhibitors, or p27Kip1), and their substrates (retinoblastoma protein). Although these proteins are generally thought to act in a linear pathway, mutations in different components frequently cooperate in tumor development.

View Article and Find Full Text PDF

Platelet-derived growth factor-B (PDGF-B) and its receptors play essential roles in the complex process of blood vessel maturation and they therefore constitute promising targets for therapeutic strategies against blood vessel-related diseases. Additionally, they are involved in the autocrine stimulation of tumor cells and have been suggested to regulate tumor stroma fibroblasts. Our study aimed to identify genes that are regulated directly by PDGF-B, or indirectly via the recruitment of perivascular cells, in the context of an intact tissue.

View Article and Find Full Text PDF

The regenerative capacity of the CNS is extremely limited. The reason for this is unclear, but glial cell involvement has been suspected, and oligodendrocytes have been implicated as inhibitors of neuroregeneration (Chen et al., 2000, GrandPre et al.

View Article and Find Full Text PDF

Pericyte loss is an early pathologic feature of diabetic retinopathy, consistently present in retinae of diabetic humans and animals. Because pericyte recruitment and endothelial cell survival are controlled, in part, by the angiopoietin/Tie2 ligand/receptor system, we studied the expression of angiopoietin-2 and -1 in relation to the evolution of pericyte loss in diabetic rat retinae, using quantitative retinal morphometry, and in retinae from mice with heterozygous angiopoietin deficiency (Ang-2 LacZ knock-in mice). Finally, recombinant angiopoietin-2 was injected into eyes of nondiabetic rats, and pericyte numbers were quantitated in retinal capillaries.

View Article and Find Full Text PDF

During cerebral ischemia, angiogenesis occurs inside and around the infarcted area. The growth of new blood vessels may contribute to a better outcome after stroke due to accelerated and increased delivery of nutrients and oxygen to the ischemic tissue. The platelet-derived growth factor (PDGF)-B/PDGF receptor (PDGFR)-beta system, hitherto thought to contribute mainly to neuroprotection, may also support angiogenesis and vascular remodeling by mediating interactions of endothelial cells with pericytes after cerebral ischemia.

View Article and Find Full Text PDF

All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells.

View Article and Find Full Text PDF

Pericytes provide vascular stability and control endothelial proliferation. Pericyte loss, microaneurysms, and acellular capillaries are characteristic for the diabetic retina. Platelet-derived growth factor (PDGF)-B is involved in pericyte recruitment, and brain capillaries of mice with a genetic ablation of PDGF-B show pericyte loss and microaneurysms.

View Article and Find Full Text PDF