We characterize the mechanisms of vortex pinning in a superfluid thin film described by the two-dimensional Gross-Pitaevskii equation. We consider a vortex "scattering experiment" whereby a single vortex in a superfluid flow interacts with a circular, uniform pinning potential. By an analogy with linear dielectrics, we develop an analytical hydrodynamic approximation that predicts vortex trajectories, the vortex fixed point and the unpinning velocity.
View Article and Find Full Text PDFQuantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip.
View Article and Find Full Text PDF