Background: There is debate whether human atrial fibrillation is driven by focal drivers or multiwavelet reentry. We propose that the changing activation sequences surrounding a focal driver can at times self-sustain in the absence of that driver. Further, the relationship between focal drivers and surrounding chaotic activation is bidirectional; focal drivers can generate chaotic activation, which may affect the dynamics of focal drivers.
View Article and Find Full Text PDFThe goal of this study was to determine quantitative relationships between electrophysiologic parameters and the propensity of cardiac tissue to undergo atrial fibrillation. We used a computational model to simulate episodes of fibrillation, which we then characterized in terms of both their duration and the population dynamics of the electrical waves which drove them. Monte Carlo sampling revealed that episode durations followed an exponential decay distribution and wave population sizes followed a normal distribution.
View Article and Find Full Text PDFBiological networks are typically comprised of many parts whose interactions are governed by nonlinear dynamics. This potentially imbues them with the ability to support multiple attractors, and therefore to exhibit correspondingly distinct patterns of behavior. In particular, multiple attractors have been demonstrated for the electrical activity of the diseased heart in situations where cardioversion is able to convert a reentrant arrhythmia to a stable normal rhythm.
View Article and Find Full Text PDFBackground: A key mechanism responsible for atrial fibrillation is multiwavelet re-entry (MWR). We have previously demonstrated improved efficiency of ablation when lesions were placed in regions of high circuit-density. In this study, we undertook a quantitative assessment of the relative effect of ablation on the probability of MWR termination and the inducibility of MWR, as a function of lesion length and circuit-density overlap.
View Article and Find Full Text PDF