Perinatal infections have a negative impact on brain development. However, the underlying mechanisms leading to neurological impairment are not completely understood and reliable models of inflammation are urgently needed. Using phorbol-myristate-acetate as an activator of inflammation, we investigated the effect on the developing rodent brain.
View Article and Find Full Text PDFObjective: Prematurely born infants are at risk for development of neurocognitive impairment in later life. Oxygen treatment has been recently identified as a trigger of neuronal and oligodendrocyte apoptosis in the developing rodent brain. We investigated the role of the Fas death receptor pathway in oxygen-triggered developmental brain injury.
View Article and Find Full Text PDFIn the immature human brain, periventricular leukomalacia (PVL) is the predominant white matter injury underlying the development of cerebral palsy. PVL has its peak incidence during a well-defined period in human brain development (23-32 weeks postconceptional age) characterized by extensive oligodendrocyte migration and maturation. We hypothesized that the dramatic rise of oxygen tissue tension associated with mammalian birth and additional oxygen exposure of the preterm infant during intensive care may be harmful to immature oligodendrocytes (OLs).
View Article and Find Full Text PDFInfants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase-1-processed cytokines, interleukin (IL)-1beta and IL-18, are involved in oxygen-induced neuronal cell death.
View Article and Find Full Text PDF