Publications by authors named "Oliver Nufer"

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel in the plasma membrane of several epithelial cells. Maturation of CFTR is inefficient in most cells, with only a fraction of nascent chains being properly folded and transported to the cell surface. The most common mutation in CFTR, CFTR-deltaF508, leads to the genetic disease cystic fibrosis.

View Article and Find Full Text PDF

The recycling mannose lectin ERGIC-53 operates as a transport receptor by mediating efficient endoplasmic reticulum (ER) export of some secretory glycoproteins. Binding of cargo to ERGIC-53 in the ER requires Ca2+. Cargo release occurs in the ERGIC, but the molecular mechanism is unknown.

View Article and Find Full Text PDF

Selective export of proteins from the endoplasmic reticulum (ER) requires transport signals that have not been fully characterized. Here, we provide the first complete map of ER export determinants of a type I membrane protein, ERGIC-53, that cycles in the early secretory pathway. ER export requires a phenylalanine motif at the C-terminus, known to mediate coat protein II (COPII) interaction, that is assisted by a glutamine in the cytoplasmic domain.

View Article and Find Full Text PDF

Forward transport of proteins from the ER to the plasma membrane requires escape from the ER's retention machinery. Recent studies suggest that 14-3-3 proteins may mediate ER export of potassium channels destined for the plasma membrane by interfering with dibasic-motif-mediated retention.

View Article and Find Full Text PDF

The accumulation of unfolded proteins in the ER triggers a signaling response known as unfolded protein response (UPR). In yeast the UPR affects several hundred genes that encode ER chaperones and proteins operating at later stages of secretion. In mammalian cells the UPR appears to be more limited to chaperones of the ER and genes assumed to be important after cell recovery from ER stress that are not important for secretion.

View Article and Find Full Text PDF
Article Synopsis
  • Lectins play a crucial role in selectively transporting newly made glycoproteins from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC), with ERGIC-53 being the key receptor facilitating this process.
  • ERGIC-53 helps export a variety of glycoproteins while two related proteins, VIP36 and ERGL, may modulate its function.
  • Recent studies highlight the complexity of ERGIC-53's cycling, revealing trafficking signals and specific motifs that direct protein export from the ER, indicating that this process is selective.
View Article and Find Full Text PDF

Consensus profiles were established to screen data bases for novel animal L-type lectins. The profiles were generated from linear sequence motifs of the human L-type lectin-like membrane proteins ERGIC-53, ERGL, and VIP36 and by optimal alignment of the entire carbohydrate recognition domain of these proteins. The search revealed numerous orthologous and homologous L-type lectin-like proteins in animals, protozoans, and yeast, as well as the sequence of a novel family member related to VIP36, named VIPL for VIP36-like.

View Article and Find Full Text PDF

Export of membrane proteins from the ER is believed to be selective and require transport signals, but the identity of such signals has remained elusive. The recycling type I membrane protein ERGIC-53 carries a C-terminal diphenylalanine motif that is required for efficient ER export. Here we show that this motif can be functionally substituted by a single phenylalanine or tyrosine at position -2, two leucines or isoleucines at position -1 and -2 or a single valine at position -1.

View Article and Find Full Text PDF