Biochim Biophys Acta Proteins Proteom
June 2019
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins.
View Article and Find Full Text PDFThe endoplasmic reticulum-mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level.
View Article and Find Full Text PDFHsfB1 is a central regulator of heat stress (HS) response and functions dually as a transcriptional co-activator of HsfA1a and a general repressor in tomato. HsfB1 is efficiently synthesized during the onset of HS and rapidly removed in the course of attenuation during the recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90.
View Article and Find Full Text PDFBackground: Physicochemical properties are frequently analyzed to characterize protein-sequences of known and unknown function. Especially the hydrophobicity of amino acids is often used for structural prediction or for the detection of membrane associated or embedded β-sheets and α-helices. For this purpose many scales classifying amino acids according to their physicochemical properties have been defined over the past decades.
View Article and Find Full Text PDFMany proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85.
View Article and Find Full Text PDFApicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist.
View Article and Find Full Text PDFLipopolysaccharides (LPS) are central components of the outer membrane and consist of Lipid A, the core polysaccharide, and the O-antigen. The synthesis of LPS is initiated at the cytosolic face of the cytoplasmic membrane. The subsequent transport to and across the outer membrane involves multiple lipopolysaccharide transport (Lpt) proteins.
View Article and Find Full Text PDFProteins of the Omp85 family chaperone the membrane insertion of β-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded β-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39.
View Article and Find Full Text PDFThe hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico.
View Article and Find Full Text PDFRibosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis.
View Article and Find Full Text PDFVesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait.
View Article and Find Full Text PDFGTPases are molecular switches that control numerous crucial cellular processes. Unlike bona fide GTPases, which are regulated by intramolecular structural transitions, the less well studied GAD-GTPases are activated by nucleotide-dependent dimerization. A member of this family is the translocase of the outer envelope membrane of chloroplast Toc34 involved in regulation of preprotein import.
View Article and Find Full Text PDFRibosome biogenesis is fundamental for cellular life, but surprisingly little is known about the underlying pathway. In eukaryotes a comprehensive collection of experimentally verified ribosome biogenesis factors (RBFs) exists only for Saccharomyces cerevisiae. Far less is known for other fungi, animals or plants, and insights are even more limited for archaea.
View Article and Find Full Text PDFMitochondrial β-barrel proteins fulfill central functions in the outer membrane like metabolite exchange catalyzed by the voltage-dependent anion channel (VDAC) and protein biogenesis by the central components of the preprotein translocase of the outer membrane (Tom40) or of the sorting and assembly machinery (Sam50). The mitochondrial division and morphology protein Mdm10 is another essential outer membrane protein with proposed β-barrel fold, which has so far only been found in Fungi. Mdm10 is part of the endoplasmic reticulum mitochondria encounter structure (ERMES), which tethers the ER to mitochondria and associates with the SAM complex.
View Article and Find Full Text PDFThe TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown.
View Article and Find Full Text PDFtRNA-NTs (tRNA nucleotidyltransferases) are required for the maturation or repair of tRNAs by ensuring that they have an intact cytidine-cytidine-adenosine sequence at their 3'-termini. Therefore this enzymatic activity is found in all cellular compartments, namely the nucleus, cytoplasm, plastids and mitochondria, in which tRNA synthesis or translation occurs. A single gene codes for tRNA-NT in plants, suggesting a complex targeting mechanism.
View Article and Find Full Text PDFBackground: Protein translocation across membranes is a central process in all cells. In the past decades the molecular composition of the translocation systems in the membranes of the endoplasmic reticulum, peroxisomes, mitochondria and chloroplasts have been established based on the analysis of model organisms. Today, these results have to be transferred to other plant species.
View Article and Find Full Text PDFHigh-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached.
View Article and Find Full Text PDFThe role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp.
View Article and Find Full Text PDFMitochondria and chloroplasts are of endosymbiotic origin. Their integration into cells entailed the development of protein translocons, partially by recycling bacterial proteins. We demonstrate the evolutionary conservation of the translocon component Tic22 between cyanobacteria and chloroplasts.
View Article and Find Full Text PDFThe eukaryotic porin superfamily consists of two families, voltage-dependent anion channel (VDAC) and Tom40, which are both located in the mitochondrial outer membrane. In Trypanosoma brucei, only a single member of the VDAC family has been described. We report the detection of two additional eukaryotic porin-like sequences in T.
View Article and Find Full Text PDFEukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner.
View Article and Find Full Text PDFIron uptake in Gram-negative bacteria involves four distinct steps: (i) siderophore synthesis, (ii) siderophore secretion into the extracellular space, (iii) iron chelation by the siderophores, and (iv) siderophore/iron uptake via complexes in the outer membrane and the intermembrane space as well as in the plasma membrane. This process is well characterized for some proteobacterial systems, but largely unexplored and scarcely investigated in cyanobacteria such as the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.
View Article and Find Full Text PDFMost mitochondrial proteins are imported into mitochondria from the cytosolic compartment. Proteins destined for the outer or inner membrane, the inter-membrane space, or the matrix are recognized and translocated by the TOM machinery containing the specialized protein import channel Tom40. The latter is a protein with β-barrel shape, which is suggested to have evolved from a porin-type protein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2011
The majority of outer membrane proteins (OMPs) from gram-negative bacteria and many of mitochondria and chloroplasts are β-barrels. Insertion and assembly of these proteins are catalyzed by the Omp85 protein family in a seemingly conserved process. All members of this family exhibit a characteristic N-terminal polypeptide-transport-associated (POTRA) and a C-terminal 16-stranded β-barrel domain.
View Article and Find Full Text PDF