Humans can quickly adapt their behavior to changes in the environment. Classical reversal learning tasks mainly measure how well participants can disengage from a previously successful behavior but not how alternative responses are explored. Here, we propose a novel 5-choice reversal learning task with alternating position-reward contingencies to study exploration behavior after a reversal.
View Article and Find Full Text PDFDeep brain stimulation (DBS) has been successfully applied in various neurodegenerative diseases as an effective symptomatic treatment. However, its mechanisms of action within the brain network are still poorly understood. Many virtual DBS models analyze a subnetwork around the basal ganglia and its dynamics as a spiking network with their details validated by experimental data.
View Article and Find Full Text PDFMulti-scale network models that simultaneously simulate different measurable signals at different spatial and temporal scales, such as membrane potentials of single neurons, population firing rates, local field potentials, and blood-oxygen-level-dependent (BOLD) signals, are becoming increasingly popular in computational neuroscience. The transformation of the underlying simulated neuronal activity of these models to simulated non-invasive measurements, such as BOLD signals, is particularly relevant. The present work describes the implementation of a BOLD monitor within the neural simulator ANNarchy to allow an on-line computation of simulated BOLD signals from neural network models.
View Article and Find Full Text PDFVisual attention is widely considered a vital factor in the perception and analysis of a visual scene. Several studies explored the effects and mechanisms of top-down attention, but the mechanisms that determine the attentional signal are less explored. By developing a neuro-computational model of visual attention including the visual cortex-basal ganglia loop, we demonstrate how attentional alignment can evolve based on dopaminergic reward during a visual search task.
View Article and Find Full Text PDFThe common view that stopping action plans by the basal ganglia is achieved mainly by the subthalamic nucleus alone due to its direct excitatory projection onto the output nuclei of the basal ganglia has been challenged by recent findings. The proposed "pause-then-cancel" model suggests that the subthalamic nucleus provides a rapid stimulus-unspecific "pause" signal, followed by a stop-cue-specific "cancel" signal from striatum-projecting arkypallidal neurons. To determine more precisely the relative contribution of the different basal ganglia nuclei in stopping, we simulated a stop-signal task with a spiking neuron model of the basal ganglia, considering recently discovered connections from the arkypallidal neurons, and cortex-projecting GPe neurons.
View Article and Find Full Text PDFPrevious computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls.
View Article and Find Full Text PDF