Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts.
View Article and Find Full Text PDFThe recognition of carbon sources and the regulatory adjustments to recognized changes are of particular importance for bacterial survival in fluctuating environments. Despite a thorough knowledge base of Escherichia coli's central metabolism and its regulation, fundamental aspects of the employed sensing and regulatory adjustment mechanisms remain unclear. In this paper, using a differential equation model that couples enzymatic and transcriptional regulation of E.
View Article and Find Full Text PDFBioinformatics
February 2009
Motivation: To obtain meaningful predictions from dynamic computational models, their uncertain parameter values need to be estimated from experimental data. Due to the usually large number of parameters compared to the available measurement data, these estimation problems are often underdetermined meaning that the solution is a multidimensional space. In this case, the challenge is yet to obtain a sound system understanding despite non-identifiable parameter values, e.
View Article and Find Full Text PDFBackground: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore beta-lactam susceptibility in methicillin-resistant S.
View Article and Find Full Text PDFIn this study, full-genome DNA microarrays based on the sequence of Staphylococcus aureus N315 were used to compare the transcriptome of a clinical S. aureus strain with a normal phenotype to that of its isogenic mutant with a stable small-colony-variant (SCV) phenotype (hemB::ermB). In addition to standard statistical analyses, systems biology advances were applied to identify reporter metabolites and to achieve a more detailed survey of genome-wide expression differences between the hemB mutant and its parental strain.
View Article and Find Full Text PDF