Typhimurium (STm) represents the most prevalent cause of invasive non-typhoidal Salmonella (iNTS) disease, and currently no licensed vaccine is available. In this work we characterized the long-term anti-bacterial immunity elicited by a STm vaccine based on Generalized Modules of Membrane Antigens (GMMA) delivering O:4,5 antigen, using a murine model of systemic infection. Subcutaneous immunization of mice with STmGMMA/Alhydrogel elicited rapid, high, and persistent antigen-specific serum IgG and IgM responses.
View Article and Find Full Text PDFFactor H-binding protein (fHbp) is an important meningococcal vaccine antigen. Native outer membrane vesicles with over-expressed fHbp (NOMV OE fHbp) have been shown to induce antibodies with broader functional activity than recombinant fHbp (rfHbp). Improved understanding of this broad coverage would facilitate rational vaccine design.
View Article and Find Full Text PDFGenetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward.
View Article and Find Full Text PDFIntroduction: Neisseria meningitidis causes epidemics of meningitis in sub-Saharan Africa. These have mainly been caused by capsular group A strains, but W and X strains are increasingly contributing to the burden of disease. Therefore, an affordable vaccine that provides broad protection against meningococcal disease in sub-Saharan Africa is required.
View Article and Find Full Text PDFNeisseria meningitidis is a major cause of bacterial meningitis and a considerable health problem in the 25 countries of the 'African Meningitis Belt' that extends from Senegal in West Africa to Ethiopia in the East. Approximately 80% of cases of meningococcal meningitis in Africa have been caused by strains belonging to capsular serogroup A. After the introduction of a serogroup A conjugate polysaccharide vaccine, MenAfriVac (™), that began in December 2010, the incidence of meningitis due to serogroup A has markedly declined in this region.
View Article and Find Full Text PDFBackground: Factor H binding protein (fHbp) is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH), which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.
View Article and Find Full Text PDFWe previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin.
View Article and Find Full Text PDFNative outer membrane vesicles (NOMV) (not detergent treated), which are prepared from recombinant strains with attenuated endotoxin activity and overexpressed factor H binding protein (fHbp), elicited broad serum bactericidal antibody responses in mice. The amount of overexpressed fHbp required for optimal immunogenicity is not known. In this study we prepared NOMV vaccines from LpxL1 knockout (ΔLpxL1) mutants with penta-acylated lipooligosaccharide and attenuated endotoxin activity.
View Article and Find Full Text PDFMeningococcal outer membrane vesicle (OMV) vaccines, which are treated with detergents to decrease endotoxin activity, are safe and effective in humans. However, the vaccines elicit serum bactericidal antibody responses largely directed against PorA, which is antigenically variable. We previously prepared a native (non-detergent-treated) OMV vaccine from a mutant of group B strain H44/76 in which the lpxL1 gene was inactivated, which resulted in penta-acylated lipid A with attenuated endotoxin activity.
View Article and Find Full Text PDFNo broadly protective vaccine is available for the prevention of group B meningococcal disease. One promising candidate is factor H-binding protein (fHbp), which is present in all strains but often sparsely expressed. We prepared seven murine immunoglobulin G monoclonal antibodies (MAbs) against fHbp from antigenic variant group 2 (v.
View Article and Find Full Text PDFBackground: Outer membrane vesicle (OMV) vaccines from mutant Neisseria meningitidis strains engineered to overexpress factor H-binding protein (fHbp) have elicited broadly protective serum antibody responses in mice. The vaccines investigated were not treated with detergents to avoid extracting fHbp, which is a lipoprotein. Because of their high endotoxin content, the vaccines would not be safe to administer to humans.
View Article and Find Full Text PDFBackground: Antibodies to factor H (fH)-binding protein (fHBP), a meningococcal vaccine antigen, activate classical complement pathway serum bactericidal activity (SBA) and block binding of the complement inhibitor fH.
Methods: To understand these 2 functions in protection, we investigated the interactions of human complement and 2 anti-fHBP monoclonal antibodies (MAbs) with encapsulated Neisseria meningitidis.
Results: JAR 3 (IgG3) blocks fH binding and elicits SBA against 2 strains with naturally high fHBP expression and a low-expressing strain genetically engineered to express high fHBP levels.
A broadly protective vaccine against meningococcal group B disease is not available. We previously reported that an outer membrane vesicle (OMV) vaccine containing over-expressed genome-derived antigen (GNA) 1870 elicited broader protective antibody responses than recombinant GNA1870 or conventional OMV vaccines prepared from a strain that naturally expresses low amounts of GNA1870. Certain wildtype strains such as H44/76 naturally express larger amounts of GNA1870 and, potentially, could be used to prepare an improved OMV vaccine without genetic over-expression of the antigen.
View Article and Find Full Text PDFBackground. Meningococcal outer membrane vesicle (OMV) vaccines are efficacious in humans but have serosubtype-specific serum bactericidal antibody responses directed at the porin protein PorA and the potential for immune selection of PorA-escape mutants.Methods.
View Article and Find Full Text PDF