We discuss the flip-chip mounting process of photodiodes and fiber sleeves on silicon substrates to meet the increasing demand for fabrication of highly integrated and hybrid quantum circuits for operation at cryogenic temperatures. To further increase the yield and success rate of the flip-chip procedure, the size of the gold stud bumps, and flip-chip parameters were optimized. Moreover, to connect optical fibers to the photodiodes in an optimal position, the fiber sleeves were aligned with specially fabricated alignment circles before applying thermocompression with the flip-chip machine.
View Article and Find Full Text PDFThe continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal.
View Article and Find Full Text PDFWe present a fabrication technology for nanoscale superconducting quantum interference devices (SQUIDs) with overdamped superconductor-normal metal-superconductor (SNS) trilayer Nb/HfTi/Nb Josephson junctions. A combination of electron-beam lithography with chemical-mechanical polishing and magnetron sputtering on thermally oxidized Si wafers is used to produce direct current SQUIDs with 100-nm-lateral dimensions for Nb lines and junctions. We extended the process from originally two to three independent Nb layers.
View Article and Find Full Text PDFWe present the design, realization, and performance of a three-axis vector nano superconducting quantum interference device (nanoSQUID). It consists of three mutually orthogonal SQUID nanoloops that allow distinguishing the three components of the vector magnetic moment of individual nanoparticles placed at a specific position. The device is based on Nb/HfTi/Nb Josephson junctions and exhibits line widths of ∼250 nm and inner loop areas of 600 × 90 and 500 × 500 nm(2).
View Article and Find Full Text PDF