Vibrational polaritons have shown potential in influencing chemical reactions, but the exact mechanism by which they impact vibrational energy redistribution, crucial for rational polariton chemistry design, remains unclear. In this work, we shed light on this aspect by revealing the role of solvent phonon modes in facilitating the energy relaxation process from the polaritons formed of a mode of W(CO) to an IR inactive mode. Ultrafast dynamic measurements indicate that along with the direct relaxation to the dark modes, lower polaritons also transition to an intermediate state, which then subsequently relaxes to the mode.
View Article and Find Full Text PDFVibrational polaritons, which have been primarily studied in Fabry-Pérot cavities with a large number of molecules ( ∼ 10-10) coupled to the resonator mode, exhibit various experimentally observed effects on chemical reactions. However, the exact mechanism is elusively understood from the theoretical side, as the large number of molecules involved in an experimental strong coupling condition cannot be represented completely in simulations. This discrepancy between theory and experiment arises from computational descriptions of polariton systems typically being limited to only a few molecules, thus failing to represent the experimental conditions adequately.
View Article and Find Full Text PDF