Present and future anatomical models for biomedical applications will need bio-mimicking three-dimensional (3D)-printed tissues. These would enable, for example, the evaluation of the quality-performance of novel devices at an intermediate step between ex-vivo and in-vivo trials. Nowadays, PolyJet technology produces anatomical models with varying levels of realism and fidelity to replicate organic tissues.
View Article and Find Full Text PDFBiocompatible and biodegradable polymers represent the future in the manufacturing of medical implantable solutions. As of today, these are generally manufactured with metallic components which cannot be naturally absorbed within the human body. This requires performing an additional surgical procedure to remove the remnants after complete rehabilitation or to leave the devices in situ indefinitely.
View Article and Find Full Text PDFObjective: This study reports on a new method for the development of multi-color and multi-material realistic Knee Joint anatomical models with unique features. In particular, the design of a fibers matrix structure that mimics the soft tissue anatomy.
Methods: Various Computer-Aided Design (CAD) systems and the PolyJet 3D printing were used in the fabrication of three anatomical models wherein fibers matrix structure is mimicked: (i) Anterior cruciate ligament reconstruction (ACL-R) model used in the previous study.
Purposes: Advancements in medical technology have enabled medical specialists to resolve significant problems concerning tendon injuries. However, despite the latest improvements, surgical tendon repair remains challenging. This study aimed to explore the capabilities of the current state-of-the-art technologies for implantable devices.
View Article and Find Full Text PDF