Publications by authors named "Oliver Griffith"

Article Synopsis
  • The first mammals that gave birth to live young had short pregnancies that involved some inflammation between the mother and the baby.
  • Many marsupials, like kangaroos and wallabies, still keep this short pregnancy style, but their way of handling inflammation is different from other mammals called eutherians.
  • In wallabies, they don't show a strong inflammatory reaction at the start of pregnancy, allowing them to have a longer gestation process compared to other marsupials.
View Article and Find Full Text PDF

Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura).

View Article and Find Full Text PDF
Article Synopsis
  • The MEST gene is important for mammalian traits like placental growth and maternal care, with an imprinted isoform found in eutherian mammals but not in marsupials.
  • This study compared MEST across different mammals (tammar wallaby, platypus, and mouse) to understand the evolution of its imprinting.
  • Results indicate that the imprinted short isoform of MEST likely evolved in the common ancestor of mammals, but imprinting itself in eutherians happened after the split from marsupials, due to the development of a specific epigenetic region.
View Article and Find Full Text PDF

In Brief: Apart from mice, meiosis initiation factors and their transcriptional regulation mechanisms are largely unknown in mammals. This study suggests that STRA8 and MEIOSIN are both meiosis initiation factors in mammals, but their transcription is epigenetically regulated differently from each other.

Abstract: In the mouse, the timing of meiosis onset differs between sexes due to the sex-specific regulation of the meiosis initiation factors, STRA8 and MEIOSIN.

View Article and Find Full Text PDF

The vertebrate placenta, a close association of fetal and parental tissue for physiological exchange, has evolved independently in sharks, teleost fishes, coelacanths, amphibians, squamate reptiles and mammals. This transient organ forms during pregnancy and is an important contributor to embryonic development in both viviparous and oviparous, brooding species. Placentae may be involved in transport of respiratory gases, wastes, immune molecules, hormones and nutrients.

View Article and Find Full Text PDF
Article Synopsis
  • The evolution of placenta involves changing reproductive timing, enhancing nutrient exchange, and improving communication between mother and fetus.
  • A study on gene expression in live-bearing and egg-laying lizards found around 70% of ligand/receptor genes are shared, but only the live-bearing species showed enrichment in specific signaling pathways related to fetal control of placentation.
  • Notably, the signaling molecule inhibin beta B (INHBB) appeared in the fetal membranes of live-bearing lizards but was absent in egg-laying relatives, indicating significant evolutionary changes in maternal-fetal signaling for viviparity.
View Article and Find Full Text PDF

Background: The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute carrier family 22 member 2 (Slc22a2) and Slc22a3, to establish the Igf2r imprinted domain in the mouse placenta. Marsupials also have an antisense non-coding RNA, ALID, expressed from a DMR, although the exact function of ALID is currently unknown.

View Article and Find Full Text PDF

Genomic imprinting is found in marsupial and eutherian mammals, but not in monotremes. While the primary regulator of genomic imprinting in eutherians is differential DNA methylation between parental alleles, conserved imprinted genes in marsupials tend to lack DNA methylation at their promoters. DNA methylation at eutherian imprinted genes is mainly catalyzed by a DNA methyltransferase (DNMT) enzyme, DNMT3A.

View Article and Find Full Text PDF

Genomic imprinting, parent-of-origin-specific gene expression, is controlled by differential epigenetic status of the parental chromosomes. While DNA methylation and suppressive histone modifications established during gametogenesis suppress imprinted genes on the inactive allele, how and when the expressed allele gains its active status is not clear. In this study, we asked whether the active histone-3 lysine-4 trimethylation (H3K4me3) marks remain at paternally expressed genes (PEGs) in sperm and embryos before and after fertilization using published data.

View Article and Find Full Text PDF

Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g.

View Article and Find Full Text PDF

Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM.

View Article and Find Full Text PDF

Male germ cells undergo two consecutive processes - pre-spermatogenesis and spermatogenesis - to generate mature sperm. In eutherian mammals, epigenetic information such as DNA methylation is dynamically reprogrammed during pre-spermatogenesis, before and during mitotic arrest. In mice, by the time germ cells resume mitosis, the majority of DNA methylation is reprogrammed.

View Article and Find Full Text PDF

Organ development occurs through the coordinated interaction of distinct tissue types. So, a question at the core of understanding the evolution of new organs is, how do new tissue-tissue signalling networks arise? The placenta is a great model for understanding the evolution of new organs, because placentas have evolved repeatedly, evolved relatively recently in some lineages, and exhibit intermediate forms in extant clades. Placentas, like other organs, form from the interaction of two distinct tissues, one maternal and one fetal.

View Article and Find Full Text PDF

Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation.

View Article and Find Full Text PDF

In human pregnancy, recognition of an embryo within the uterus is essential to support the fetus through gestation. In most marsupials, such as the opossums, pregnancy is shorter than the oestrous cycle and the steroid hormone profile during pregnancy and oestrous cycle are indistinguishable. For these reasons, it was assumed that recognition of pregnancy, as a trait, evolved in the eutherian (placental) stem lineage and independently in wallabies and kangaroos.

View Article and Find Full Text PDF

Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty.

View Article and Find Full Text PDF

Evolutionary simplification of autopodial structures is a major theme in studies of body-form evolution. Previous studies on amniotes have supported Morse's law, that is, that the first digit reduced is Digit I, followed by Digit V. Furthermore, the question of reversibility for evolutionary digit loss and its implications for "Dollo's law" remains controversial.

View Article and Find Full Text PDF

Developmental plasticity in offspring phenotype occurs as a result of the environmental conditions embryos experience during development. The nutritional environment provided to a fetus is an important source of developmental plasticity. Reptiles are a particularly interesting system to study this plasticity because of their varied routes of maternal nutrient allocation to reproduction.

View Article and Find Full Text PDF

A widely discussed physiological puzzle of mammalian pregnancy is the immunological paradox, which asks: why is the semi-allogenic fetus not attacked by the mother's adaptive immune system? Here, we argue that an additional, and perhaps more fundamental paradox is the question: why is embryo implantation so similar to inflammation while inflammation is also the greatest threat to the continuation of pregnancy? Equally puzzling is the question of how this arose during evolution. We call this the inflammation paradox. We argue that acute endometrial inflammation was ancestrally a natural maternal reaction to the attaching blastocyst, a situation still observed in the opossum.

View Article and Find Full Text PDF

How organs originate and evolve is a question fundamental to understanding the evolution of complex multicellular life forms. Vertebrates have a relatively standard body plan with more or less the same conserved set of organs. The placenta is a comparatively more recently evolved organ, derived in many lineages independently.

View Article and Find Full Text PDF

The molecular changes that support implantation in eutherian mammals are necessary to establish pregnancy. In marsupials, pregnancy is relatively short, and although a placenta does form, it is present for only a few days before parturition. However, morphological changes in the uterus of marsupials at term mimic those that occur during implantation in humans and mice.

View Article and Find Full Text PDF

The evolution of new organs is difficult to study because most vertebrate organs evolved only once, more than 500 million years ago. An ideal model for understanding complex organ evolution is the placenta, a structure that is present in live bearing reptiles and mammals (amniotes), which has evolved independently more than 115 times. Using transcriptomics, we characterized the uterine gene expression patterns through the reproductive cycle of a viviparous skink lizard, Pseudemoia entrecasteauxii Then we compare these patterns with the patterns of gene expression from two oviparous skinks Lampropholis guichenoti and Lerista bougainvillii While thousands of genes are differentially expressed between pregnant and non-pregnant uterine tissue in the viviparous skink, few differentially expressed genes were identified between gravid and non-gravid oviparous skinks.

View Article and Find Full Text PDF

In oviparous amniotes (reptiles, birds, and mammals) the chorioallantoic membrane (CAM) lines the inside of the egg and acts as the living point of contact between the embryo and the outside world. In livebearing (viviparous) amniotes, communication during embryonic development occurs across placental tissues, which form between the uterine tissue of the mother and the CAM of the embryo. In both oviparous and viviparous taxa, the CAM is at the interface of the embryo and the external environment and can transfer signals from there to the embryo proper.

View Article and Find Full Text PDF