Publications by authors named "Oliver Gessner"

For many chemical reactions, it remains notoriously difficult to predict and experimentally determine the rates and branching ratios between different reaction channels. This is particularly the case for reactions involving short-lived intermediates, whose observation requires ultrafast methods. The UV photochemistry of bromoform (CHBr) is among the most intensely studied photoreactions.

View Article and Find Full Text PDF

A surface photovoltage (SPV) is observed whenever a doped semiconductor with non-negligible band bending is illuminated by light and charge carriers are excited across the band gap. The sign of the SPV depends on the nature of the doping, the amplitude of the SPV increases with the fluence of the light illumination up to a saturation value, which is determined by the doping concentration. We have investigated Si(100) samples with well-characterized doping levels over a wide range of illumination fluences.

View Article and Find Full Text PDF

The UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photo-induced chemical transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C4H3IS) is performed. The dynamics are experimentally monitored with a femtosecond extreme ultraviolet (XUV) probe that measures iodine N-edge 4d core-to-valence transitions.

View Article and Find Full Text PDF

Strong-field ionization of nanoscale clusters provides excellent opportunities to study the complex correlated electronic and nuclear dynamics of near-solid density plasmas. Yet, monitoring ultrafast, nanoscopic dynamics in real-time is challenging, which often complicates a direct comparison between theory and experiment. Here, near-infrared laser-induced plasma dynamics in ∼600  nm diameter helium droplets are studied by femtosecond time-resolved x-ray coherent diffractive imaging.

View Article and Find Full Text PDF

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques.

View Article and Find Full Text PDF

Quantum fluid droplets made of helium-3 (He) or helium-4 (He) isotopes have long been considered as ideal cryogenic nanolabs, enabling unique ultracold chemistry and spectroscopy applications. The droplets were believed to provide a homogeneous environment in which dopant atoms and molecules could move and react almost as in free space but at temperatures close to absolute zero. Here, we report ultrafast x-ray diffraction experiments on xenon-doped He and He nanodroplets, demonstrating that the unavoidable rotational excitation of isolated droplets leads to highly anisotropic and inhomogeneous interactions between the host matrix and enclosed dopants.

View Article and Find Full Text PDF

A prerequisite for advancing hybrid solar light harvesting systems is a comprehensive understanding of the spatiotemporal dynamics of photoinduced interfacial charge separation. Here, we demonstrate access to this transient charge redistribution for a model hybrid system of nanoporous zinc oxide (ZnO) and ruthenium bipyridyl chromophores. The site-selective probing of the molecular electron donor and semiconductor acceptor by time-resolved X-ray photoemission provides direct insight into the depth distribution of the photoinjected electrons and their interaction with the local band structure on a nanometer length scale.

View Article and Find Full Text PDF

We demonstrate a 40x mean noise power reduction (NPR) in core-to-valence extreme ultraviolet (XUV) femtosecond transient absorption spectroscopy with a high harmonic generation (HHG) light source. An adaptive iteratively reweighted principal component regression (airPCR) is used to analyze and suppress spectrally correlated HHG intensity fluctuations. The technique requires significantly less user input and leads to a higher mean NPR than a previously introduced edge-pixel PCR method that relies on the manual identification of signal-free spectral regions.

View Article and Find Full Text PDF

We present a novel technique to monitor dynamics in interfacial systems through temporal correlations in x-ray photoelectron spectroscopy (XPS) signals. To date, the vast majority of time-resolved x-ray spectroscopy techniques rely on pump-probe schemes, in which the sample is excited out of equilibrium by a pump pulse, and the subsequent dynamics are monitored by probe pulses arriving at a series of well-defined delays relative to the excitation. By definition, this approach is restricted to processes that can either directly or indirectly be initiated by light.

View Article and Find Full Text PDF

The ultrafast dynamics of photon-to-charge conversion in an organic light-harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides site-specific information about charge separation and enables the monitoring of free charge carrier generation dynamics on their natural timescale, here applied to the model donor-acceptor system CuPc:C. A previously unobserved channel for exciton dissociation into mobile charge carriers is identified, providing the first direct, real-time characterization of the timescale and efficiency of charge generation from low-energy charge-transfer states in an organic heterojunction.

View Article and Find Full Text PDF

Progress in the development of plasmon-enabled light-harvesting technologies requires a better understanding of their fundamental operating principles and current limitations. Here, we employ picosecond time-resolved X-ray photoemission spectroscopy to investigate photoinduced electron transfer in a plasmonic model system composed of 20 nm sized gold nanoparticles (NPs) attached to a nanoporous film of TiO. The measurement provides direct, quantitative access to transient local charge distributions from the perspectives of the electron donor (AuNP) and the electron acceptor (TiO).

View Article and Find Full Text PDF

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host.

View Article and Find Full Text PDF

UV pump-extreme UV (XUV) probe femtosecond transient absorption spectroscopy is used to study the 268 nm induced photodissociation dynamics of bromoform (CHBr). Core-to-valence transitions at the Br(3) absorption edge (∼70 eV) provide an atomic scale perspective of the reaction, sensitive to changes in the local valence electronic structure, with ultrafast time resolution. The XUV spectra track how the singly occupied molecular orbitals of transient electronic states develop throughout the C-Br bond fission, eventually forming radical Br and CHBr products.

View Article and Find Full Text PDF

Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets.

View Article and Find Full Text PDF

Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer".

View Article and Find Full Text PDF

Disulfide bonds are pivotal for the structure, function, and stability of proteins, and understanding ultraviolet (UV)-induced S-S bond cleavage is highly relevant for elucidating the fundamental mechanisms underlying protein photochemistry. Here, the near-UV photodecomposition mechanisms in gas-phase dimethyl disulfide, a prototype system with a S-S bond, are probed by ultrafast transient X-ray absorption spectroscopy. The evolving electronic structure during and after the dissociation is simultaneously monitored at the sulfur L-edges and the carbon K-edge with 100 fs (FWHM) temporal resolution using the broadband soft X-ray spectrum from a femtosecond high-order harmonics light source.

View Article and Find Full Text PDF

Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (CHSe). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (∼58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations.

View Article and Find Full Text PDF

The dissociation dynamics of ferrocene are explored following strong field ionization using femtosecond time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy. Employing transitions in the vicinity of the iron 3p (M) edge, the dissociation is monitored from the point of view of the iron atom. With low strong field pump intensities (≈2 × 10 W cm), only ferrocenium cations are produced, and their iron 3p absorption spectrum is reported.

View Article and Find Full Text PDF

We present a picosecond time-resolved X-ray absorption spectroscopy (tr-XAS) setup designed for synchrotron-based studies of interfacial photochemical dynamics. The apparatus combines a high power, variable repetition rate picosecond laser system with a time-resolved X-ray fluorescence yield detection technique. Time-tagging of the detected fluorescence signals enables the parallel acquisition of X-ray absorption spectra at a variety of pump-probe delays employing the well-defined time structure of the X-ray pulse trains.

View Article and Find Full Text PDF

Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2).

View Article and Find Full Text PDF
Article Synopsis
  • Lensless x-ray microscopy relies on recovering the phase of scattered radiation from a specimen, which is crucial for creating images.
  • Researchers introduced a new phase retrieval method by encasing objects in superfluid helium nanodroplets, which supports the specimen and aids in image reconstruction.
  • The technique is effective and produces detailed images, as demonstrated with xenon clusters showing transient quantum vortices within the delicate helium droplets.
View Article and Find Full Text PDF