Purpose: To evaluate the long-term efficacy of combined radiotherapy (RT) and hyperthermia (HT) in a large mono-institutional cohort of breast cancer (BC) patients affected by recurrent, newly diagnosed non-resectable or high risk resected tumor.
Materials And Methods: Records of BC patients treated with RT + HT between 1995 and 2018 were retrospectively analyzed. RT doses of 50-70 Gy concurrent to a twice per week superficial HT were applied.
Background And Purpose: Hybrid magnetic resonance linear accelerator (MR-Linac) systems represent a novel technology for online adaptive radiotherapy. 3D secondary dose calculation (SDC) of online adapted plans is required to assure patient safety. Currently, no 3D-SDC solution is available for 1.
View Article and Find Full Text PDFBackground: Cure- and toxicity rates after intensity-modulated radiotherapy (IMRT) of prostate cancer are dose-and volume dependent. We prospectively studied the potential for organ at risk (OAR) sparing and compensation of tumor movement with the coverage probability (CovP) concept.
Patients And Methods: Twenty-eight prostate cancer patients (median age 70) with localized disease (cT1c-2c, N0, M0) and intermediate risk features (prostate-specific antigen [PSA] < 20, Gleason score ≤ 7b) were treated in a prospective study with the CovP concept.
MR-guided radiotherapy requires novel quality assurance (QA) methods for intensity-modulated radiotherapy treatment plans (TPs). Here, an optimized method for TPs for a 1.5 T MR-linac was developed and implemented clinically.
View Article and Find Full Text PDFCure- and toxicity rates of prostate IGRT can both be affected by ill-chosen planning target volume (PTV) margins. For dose-escalated prostate radiotherapy, we studied the potential for organ at risk (OAR) sparing and compensation of prostate motion with robust plan optimization using the coverage probability (CovP) concept compared to conventional PTV-based IMRT. We evaluated plan quality of CovP-plans for 27 intermediate risk prostate cancer patients treated in a prospective study (78 Gy/39 fractions).
View Article and Find Full Text PDFIntroduction: External beam partial breast irradiation (PBI) provides equal oncological outcomes compared to whole breast irradiation when applied to patients with low risk tumours. Recently, linacs with an integrated magnetic resonance image-guidance system have become clinically available. Here we report the first-in-human PBI performed at the 1.
View Article and Find Full Text PDFObjective: To investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.
Material And Methods: In PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced.
In magnetic resonance (MR) guided radiotherapy, the magnetic field-dependent change in the dose response of ionization chambers is typically included by means of a correction factor [Formula: see text]. This factor can be determined experimentally or calculated by means of Monte Carlo (MC) simulations. To date, a small number of experimental values for [Formula: see text] at magnetic flux densities above 1.
View Article and Find Full Text PDFPurpose: To investigate a new automatic template-based replanning approach combined with constrained optimization, which may be highly useful for a rapid plan transfer for planned or unplanned machine breakdowns. This approach was tested for prostate cancer (PC) and head-and-neck cancer (HNC) cases.
Methods: The constraints of a previously optimized volumetric modulated arc therapy (VMAT) plan were used as a template for automatic plan reoptimization for different accelerator head models.
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k . The purpose of this study is to systematically investigate k for a typical reference setup for commercially available ionization chambers with different magnetic field strengths.
View Article and Find Full Text PDFBackground: The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT).
Methods: Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters.
In this study, a Monte Carlo (MC)-based beam model for an ELEKTA linear accelerator was established. The beam model is based on the EGSnrc Monte Carlo code, whereby electron beams with nominal energies of 10, 12 and 15 MeV were considered. For collimation of the electron beam, only the integrated photon multi-leaf-collimators (MLCs) were used.
View Article and Find Full Text PDFBackground And Purpose: Whole craniospinal irradiation cannot be achieved in one field at a normal treatment distance for adults. The aim of this newly developed technique is to minimize problems of matching fields and to maximize precision of craniospinal radiotherapy.
Patients And Methods: Twelve patients (3-59 years) had craniospinal irradiation in supine position.
New edition of DIN 6800-2 (1997) has been published in March 2008. The concept of absorbed dose to water has been retained unchanged. In many points modern data and approaches were adopted to international dosimetry protocols.
View Article and Find Full Text PDFThe application of electron beams in radiotherapy is still based on tables of monitor units, although 3-D treatment planning systems for electron beams are available. This have several reasons: The need for 3-D treatment planning is not recognized; there is no confidence in the calculation algorithm; Monte-Carlo algorithms are too time-consuming; and the effort necessary to measure basic beam data for 3-D planning is considered disproportionate. However, the increasing clinical need for higher dosimetric precision and for more conformal electron beams leads to the requirement for more sophisticated tables of monitor units.
View Article and Find Full Text PDFMeasurements as well as Monte Carlo simulations are presented to investigate the deviation between the dose to water and the value measured by an ionization chamber. These deviations are evaluated at different depths (1.5 and 10 cm) and at an off-axis position of 15 cm.
View Article and Find Full Text PDFThe presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter.
View Article and Find Full Text PDFSince Markus chambers are no longer recommended in the 1997 DIN 6800-2 version there are uncertainties as to the use of alternative chamber types for electron dosimetry. Therefore, we performed a comparison between different types of ionization chambers. In particular, the widespread Farmer and Roos chambers were compared with the Markus chamber for polarity effect, chamber-to-chamber variation, and deviations of the measured absorbed dose relative to the value obtained with the Roos chamber (which is regarded as an ideal Bragg-Gray-chamber).
View Article and Find Full Text PDF