Publications by authors named "Oliver D Staples"

The tenovins are small molecule inhibitors of the NAD(+)-dependent family of protein deacetylases known as the sirtuins. There remains considerable interest in inhibitors of this enzyme family due to possible applications in both cancer and neurodegenerative disease therapy. Through the synthesis of novel tenovin analogues, further insights into the structural requirements for activity against the sirtuins in vitro are provided.

View Article and Find Full Text PDF

A robust p53 cell-based assay that exploits p53's function as a transcription factor was used to screen a small molecule library and identify bioactive small molecules with potential antitumor activity. Unexpectedly, the majority of the highest ranking hit compounds from this screen arrest cells in mitosis and most of them impair polymerization of tubulin in cells and in vitro. One of these novel compounds, JJ78:1, was subjected to structure-activity relationship studies and optimized leading to the identification of JJ78:12.

View Article and Find Full Text PDF

We have carried out a cell-based screen aimed at discovering small molecules that activate p53 and have the potential to decrease tumor growth. Here, we describe one of our hit compounds, tenovin-1, along with a more water-soluble analog, tenovin-6. Via a yeast genetic screen, biochemical assays, and target validation studies in mammalian cells, we show that tenovins act through inhibition of the protein-deacetylating activities of SirT1 and SirT2, two important members of the sirtuin family.

View Article and Find Full Text PDF

Background: Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC) may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF