Publications by authors named "Oliver C Zafiriou"

Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction.

View Article and Find Full Text PDF

CO(2) is the major known product of solar photolysis of marine dissolved organic matter (DOM). Measuring the rate of this globally significant process is hindered by low rates per unit volume, high background CO(2) in seawater, and ubiquitous contamination. Current methods utilize CO(2)-free seawater matrices, possibly introducing artifacts.

View Article and Find Full Text PDF

Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection to produce hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh water and seawater samples with both steady-state scavenger (S-SS) and time-resolved laser flash photolysis (LFP) methods. However, the apparent quantum yields (AQYs) of e-aq for the same samples using the two methods differ by as much as a factor of 100, necessitating a closer re-examination of how the process is measured.

View Article and Find Full Text PDF

Photodecarboxylation (often stoichiometrically expressed as RCOOH + (1/2)O2 --> ROH + CO2) has long been postulated to be principally responsible for generating CO2 from photooxidation of dissolved organic matter (DOM). In this study, the quantitative relationships were investigated among O2 consumption, CO2 production, and variation of carboxyl content resulting from photooxidation of DOM in natural water samples obtained from the freshwater reaches of the Satilla River and Altamaha River in the southeastern United States. In terms of loss of dissolved organic carbon (DOC), loss of optical absorbance, and production of CO2, the rate of photooxidation of DOM was increased in the presence of Fe redox chemistry and with increasing O2 content.

View Article and Find Full Text PDF