ACS Appl Mater Interfaces
October 2018
Biocompatible ZnS-based nanocrystals capped with 4-mercaptophenylboronic acid (ZnS@B) have been size-designed as excellent pH-responsive gatekeepers on mesoporous silica nanoparticles (MSNs), which encapsulate fluorophore safranin O (S2-Saf) or anticancer drug epirubicin hydrochloride (S2-Epi) for delivery applications in cancer cells. In this novel hybrid system, the gate mechanism consists of reversible pH-sensitive boronate ester moieties linking the nanocrystals directly to the alcohol groups from silica surface scaffold, avoiding tedious intermediate functionalization steps. The ∼3 nm size of the ZnS@B nanocrystals was tailored to allow efficient sealing of the pore voids and achieve a "zero premature cargo release" at neutral pH (7.
View Article and Find Full Text PDFPorous polymer monoliths have emerged as unique materials for many applications, including liquid-chromatographic analyses at an unrivaled speed, solid-phase extraction, and enzyme immobilization in capillary and microfluidic chip format. This article reviews the state of the art in the preparation of monoliths in narrow-bore capillaries and microfluidic chips and their miniaturization under conditions of spatial confinement. New developments in their preparation mainly using free radical polymerization techniques with a focus on morphological aspects in view of homogeneous porous materials are described.
View Article and Find Full Text PDF