Publications by authors named "Oliver Breunig"

Article Synopsis
  • Selective-area epitaxy (SAE) is a technique used to create specific shapes of thin films on pre-patterned substrates, allowing for precise control over the growth of materials.
  • This study successfully demonstrates the growth of Hall-bars and nanowires from bulk-insulating topological insulators (TIs) using SAE, which had not been reported before in this context.
  • The newly created TI nanostructures exhibit excellent transport properties and quantum behaviors, presenting opportunities for scalable fabrication of advanced topological devices.
View Article and Find Full Text PDF

Stable composite objects, such as hadrons, nuclei, atoms, molecules and superconducting pairs, formed by attractive forces are ubiquitous in nature. By contrast, composite objects stabilized by means of repulsive forces were long thought to be theoretical constructions owing to their fragility in naturally occurring systems. Surprisingly, the formation of bound atom pairs by strong repulsive interactions has been demonstrated experimentally in optical lattices.

View Article and Find Full Text PDF

Wireless technology relies on the conversion of alternating electromagnetic fields into direct currents, a process known as rectification. Although rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable a highly controllable rectification were recently discovered. One such effect is magnetochiral anisotropy (MCA), in which the resistance of a material or a device depends on both the direction of the current flow and an applied magnetic field.

View Article and Find Full Text PDF

The non-trivial topology of three-dimensional topological insulators dictates the appearance of gapless Dirac surface states. Intriguingly, when made into a nanowire, quantum confinement leads to a peculiar gapped Dirac sub-band structure. This gap is useful for, e.

View Article and Find Full Text PDF

One-dimensional Majorana modes are predicated to form in Josephson junctions based on three-dimensional topological insulators (TIs). While observations of supercurrents in Josephson junctions made on bulk-insulating TI samples have been reported recently, the Fraunhofer patters observed in such TI-based Josephson junctions, which sometimes present anomalous features, are still not well-understood. Here, we report our study of highly gate-tunable TI-based Josephson junctions made of one of the most bulk-insulating TI materials, BiSbTeSe, and Al.

View Article and Find Full Text PDF

Low-dimensional quantum magnets promote strong correlations between magnetic moments that lead to fascinating quantum phenomena. A particularly interesting system is the antiferromagnetic spin-1/2 Heisenberg chain because it is exactly solvable by the Bethe-Ansatz method. It is approximately realized in the magnetic insulator copper pyrazine dinitrate, providing a unique opportunity for a quantitative comparison between theory and experiment.

View Article and Find Full Text PDF

With the recent discovery of Weyl semimetals, the phenomenon of negative magnetoresistance (MR) is attracting renewed interest. Large negative MR is usually related to magnetism, but the chiral anomaly in Weyl semimetals is a rare exception. Here we report a mechanism for large negative MR which is also unrelated to magnetism but is related to disorder.

View Article and Find Full Text PDF