This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors' ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area.
View Article and Find Full Text PDFThe study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole mixer at a given Reynolds number. The results demonstrate consistent mixing performance trends across both methods for various operation points.
View Article and Find Full Text PDFFor the investigation of moisture and salt content in historic masonry, destructive drilling samples followed by a gravimetric investigation is still the preferred method. In order to prevent the destructive intrusion into the building substance and to enable a large-area measurement, a nondestructive and easy-to-use measuring principle is needed. Previous systems for moisture measurement usually fail due to a strong dependence on contained salts.
View Article and Find Full Text PDF