Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn).
View Article and Find Full Text PDFThis is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens.
View Article and Find Full Text PDFLivestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMicroplastics (MP) data collection from the aquatic environment is a challenging endeavour that sets apparent limitations to regional and global MP quantification. Expensive data collection causes small sample sizes and oftentimes existing data sets are compared without accounting for natural variability due to hydrodynamic processes governing the distribution of particles. In Warnow estuarine sediments (Germany) we found significant correlations between high-density polymer size fractions (≥500 mm) and sediment grain size.
View Article and Find Full Text PDF