Publications by authors named "Oliver Alka"

Neuroblastoma, the most common childhood solid tumor, originates from primitive sympathetic nervous system cells. Epoxyazadiradione (EAD) is a limonoid derived from , belonging to the family Meliaceae. In this study, we isolated the EAD from seed and studied the anti-cancer potential against neuroblastoma.

View Article and Find Full Text PDF

Metabolomics experiments generate highly complex datasets, which are time and work-intensive, sometimes even error-prone if inspected manually. Therefore, new methods for automated, fast, reproducible, and accurate data processing and dereplication are required. Here, we present UmetaFlow, a computational workflow for untargeted metabolomics that combines algorithms for data pre-processing, spectral matching, molecular formula and structural predictions, and an integration to the GNPS workflows Feature-Based Molecular Networking and Ion Identity Molecular Networking for downstream analysis.

View Article and Find Full Text PDF

The extraction of meaningful biological knowledge from high-throughput mass spectrometry data relies on limiting false discoveries to a manageable amount. For targeted approaches in metabolomics a main challenge is the detection of false positive metabolic features in the low signal-to-noise ranges of data-independent acquisition results and their filtering. Another factor is that the creation of assay libraries for data-independent acquisition analysis and the processing of extracted ion chromatograms have not been automated in metabolomics.

View Article and Find Full Text PDF

Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP).

View Article and Find Full Text PDF

Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. The main advantages include greater reproducibility and sensitivity and a greater dynamic range compared with data-dependent acquisition (DDA). However, the data analysis is complex and often requires expert knowledge when dealing with large-scale data sets.

View Article and Find Full Text PDF

Technological advances in high-resolution mass spectrometry (MS) vastly increased the number of samples that can be processed in a life science experiment, as well as volume and complexity of the generated data. To address the bottleneck of high-throughput data processing, we present SmartPeak (https://github.com/AutoFlowResearch/SmartPeak), an application that encapsulates advanced algorithms to enable fast, accurate, and automated processing of capillary electrophoresis-, gas chromatography-, and liquid chromatography (LC)-MS(/MS) data and high-pressure LC data for targeted and semitargeted metabolomics, lipidomics, and fluxomics experiments.

View Article and Find Full Text PDF

Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.

View Article and Find Full Text PDF

Background: Aberrant hedgehog (HH) signaling is implicated in the development of various cancer entities such as medulloblastoma. Activation of GLI transcription factors was revealed as the driving force upon pathway activation. Increased phosphorylation of essential effectors such as Smoothened (SMO) and GLI proteins by kinases including Protein Kinase A, Casein Kinase 1, and Glycogen Synthase Kinase 3 β controls effector activity, stability and processing.

View Article and Find Full Text PDF

This chapter describes the open-source tool suite OpenMS. OpenMS contains more than 180 tools which can be combined to build complex and flexible data-processing workflows. The broad range of functionality and the interoperability of these tools enable complex, complete, and reproducible data analysis workflows in computational proteomics and metabolomics.

View Article and Find Full Text PDF

The application of ketogenic diet (KD) (high fat/low carbohydrate/adequate protein) as an auxiliary cancer therapy is a field of growing attention. KD provides sufficient energy supply for healthy cells, while possibly impairing energy production in highly glycolytic tumor cells. Moreover, KD regulates insulin and tumor related growth factors (like insulin growth factor-1, IGF-1).

View Article and Find Full Text PDF

The determination of cocoa shell content (Theobroma cacao L.) in cocoa products using a metabolomics approach was accomplished via high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS). The developed method was used to separately analyze the polar and non-polar metabolome of the cocoa testa (cocoa shell) and the cocoa cotyledons (cocoa nibs) of cocoa samples from 15 different geographic origins, harvest years, and varieties in positive and negative ion mode.

View Article and Find Full Text PDF

Mass spectrometry (MS) is one of the primary techniques used for large-scale analysis of small molecules in metabolomics studies. To date, there has been little data format standardization in this field, as different software packages export results in different formats represented in XML or plain text, making data sharing, database deposition, and reanalysis highly challenging. Working within the consortia of the Metabolomics Standards Initiative, Proteomics Standards Initiative, and the Metabolomics Society, we have created mzTab-M to act as a common output format from analytical approaches using MS on small molecules.

View Article and Find Full Text PDF

The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales.

View Article and Find Full Text PDF

Background: In recent years, several mass spectrometry-based omics technologies emerged to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. The research enabled through these methods potentially contributes to the diagnosis and pathophysiology of human diseases as well as to the clarification of structures and interactions between biomolecules. Simultaneously, technological advances in the field of mass spectrometry leading to an ever increasing amount of data, demand high standards in efficiency, accuracy and reproducibility of potential analysis software.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: