We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes.
View Article and Find Full Text PDFWe propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes in real-time. This yields the complete information about the optical field, from which the Poynting vector and the wavefront are deduced.
View Article and Find Full Text PDFWe report on a fast and experimentally easy technique for measuring the beam propagation ratio M(2) of light guided by optical fibers. A holographic filter enables us to determine amplitudes and phases of the excited fiber eigenmodes. The coherent superposition of modes allows the reconstruction of the optical field.
View Article and Find Full Text PDFWe present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.
View Article and Find Full Text PDFWe measure the polarization state of each guided transversal mode propagating in step-index large-mode-area fibers (V≈4) using a correlation-filter based measurement technique in combination with a Stokes parameter measurement. The entire emerging beam, expressed in terms of a phase-dependent superposition of linearly polarized modes, demonstrates spatially varying polarization properties. By knowing the information about modal amplitudes and phase differences, full information about the optical field is available.
View Article and Find Full Text PDF