Dengue is a mosquito-borne flavivirus that is spreading at an unprecedented rate and has developed into a major health and economic burden in over 50 countries. Even though infected individuals develop potent and long-lasting serotype-specific neutralizing antibodies (Abs), the epitopes engaged by human neutralizing Abs have not been identified. Here, we demonstrate that the dengue virus (DENV)-specific serum Ab response in humans consists of a large fraction of cross-reactive, poorly neutralizing Abs and a small fraction of serotype-specific, potently inhibitory Abs.
View Article and Find Full Text PDFSymptomatic dengue virus infection ranges in disease severity from an influenza-like illness to life-threatening shock. One model of the mechanism underlying severe disease proposes that weakly neutralizing, dengue serotype cross-reactive antibodies induced during a primary infection facilitate virus entry into Fc receptor-bearing cells during a subsequent secondary infection, increasing viral replication and the release of cytokines and vasoactive mediators, culminating in shock. This process has been termed antibody-dependent enhancement of infection and has significantly hindered vaccine development.
View Article and Find Full Text PDFHumans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease.
View Article and Find Full Text PDFStaphylococcus aureus pathogenicity islands (SaPIs) are mobile elements that are induced by a helper bacteriophage to excise and replicate and to be encapsidated in phage-like particles smaller than those of the helper, leading to high-frequency transfer. SaPI mobilization is helper phage specific; only certain SaPIs can be mobilized by a particular helper phage. Staphylococcal phage 80α can mobilize every SaPI tested thus far, including SaPI1, SaPI2 and SaPIbov1.
View Article and Find Full Text PDFSaPI1 and SaPIbov1 are chromosomal pathogenicity islands in Staphylococcus aureus that carry tst and other superantigen genes. They are induced to excise and replicate by certain phages, are efficiently encapsidated in SaPI-specific small particles composed of phage virion proteins and are transferred at very high frequencies. In this study, we have analysed three SaPI genes that are important for the phage-SaPI interaction, int (integrase) terS (phage terminase small subunit homologue) and pif (phage interference function).
View Article and Find Full Text PDF