Septins are filamentous GTPases that play important but poorly characterized roles in ciliogenesis. Here, we show that SEPTIN9 regulates RhoA signaling at the base of cilia by binding and activating the RhoA guanine nucleotide exchange factor, ARHGEF18. GTP-RhoA is known to activate the membrane targeting exocyst complex, and suppression of SEPTIN9 causes disruption of ciliogenesis and mislocalization of an exocyst subunit, SEC8.
View Article and Find Full Text PDFPolydactyly or polydactylism, also known as a hyperdactyly, is a congenital limb defect with various morphologic phenotypes. Apart from physical and functional impairments, the presence of polydactyly is an indication of an underlying syndrome in the newborn. Usually, it follows as an autosomal dominant/recessive inheritance pattern with defects in the limb development's anteroposterior patterning.
View Article and Find Full Text PDFPolydactyly or hexadactyly is characterized by an extra digit/toe with or without a bone. Currently, variants in ten genes have been implicated in the non-syndromic form of polydactyly. DNA from a single affected individual having bilateral postaxial polydactyly was subjected to whole exome sequencing (WES), followed by Sanger sequencing.
View Article and Find Full Text PDFPrimary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability.
View Article and Find Full Text PDFSeptins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of hetero-oligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to copolymerize due to incompatible ends.
View Article and Find Full Text PDFPrimary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability.
View Article and Find Full Text PDFSeptins are a family of GTP-binding proteins that associate with cellular membranes and the cytoskeleton. Their ability to polymerize into filamentous structures permits them to serve as diffusion barriers for membrane proteins and as multi-molecular scaffolds that recruit components of signaling pathways. At the cellular level, septins contribute to the regulation of numerous processes, including cytokinesis, cell polarity, cell migration, and many others.
View Article and Find Full Text PDFE2F transcription can lead to cell proliferation or apoptosis, indicating that E2Fs control opposing functions. In a similar manner, DNA double-strand breaks can signal to induce cell cycle arrest or apoptosis. Specifically, pRB is activated following DNA damage, allowing it to bind to E2Fs and block transcription at cell cycle promoters; however, E2F1 is simultaneously activated, leading to transcription at proapoptotic promoters.
View Article and Find Full Text PDF