Fuel cells are recognized as promising alternatives to existing conventional energy systems for a sustainable future. However, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical fuel cell applications. Herein, the PtCo/C nanoparticles with about 4.
View Article and Find Full Text PDFThe photocatalytic activity of photocatalysts can be enhanced by cation doping, and the dopant concentration plays a key role in achieving high efficiency. This study explores the impact of copper (Cu) doping at concentrations ranging from 0% to 10% on the microstructural, optical, electronic, and photocatalytic properties of zinc oxide (ZnO) nanostructures. The x-ray diffraction analysis shows a non-linear alteration in the lattice parameters with increasing the Cu content and the formation of CuO as a secondary phase at the Cu concentration of >3%.
View Article and Find Full Text PDFHigh-entropy materials (HEMs) have garnered extensive attention owing to their diverse and captivating physicochemical properties. Yet, fine-tuning morphological properties of HEMs remains a formidable challenge, constraining their potential applications. To address this, we present a rapid, low-energy consumption diethylenetriamine (DETA)-assisted microwave hydrothermal method for synthesizing a series of two-dimensional high-entropy selenides (HESes).
View Article and Find Full Text PDFVanadate electrodes are potential candidates for lithium-ion batteries (LIBs) due to their large theoretical specific capacity. However, their easy dissolution in the electrolyte, large structural changes, low conductivity and capacity decay during cycling hinder their further application. Herein, a lithium-ion battery electrode of NaVO (NVO) nanowires covered with a carbon film and formed by the reconstruction of carbon quantum dots (CDs) was obtained using an capping strategy.
View Article and Find Full Text PDFContaminants of emerging concern (CEC) contain a wide range of compounds, such as pharmaceutical waste, pesticides, herbicides, industrial chemicals, organic dyes, etc. Their presence in the surrounding has extensive and multifaceted effects on human health as they have the potential to persist in the environment, accumulate in biota, and disrupt ecosystems. In this regard, various remediation methods involving different kind of functional nanomaterials with unique properties have been developed.
View Article and Find Full Text PDF2H MoTe (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal boron nitride (h-BN) in lateral heterostructures offers a unique platform for designing and engineering novel electronic devices. We report the fabrication of highly conductive interfaces in crystalline ionic liquid-gated (ILG) field-effect transistors (FETs) consisting of a few layers of MoTe/h-BN heterojunctions.
View Article and Find Full Text PDFPhotocatalytic CO conversion for hydrocarbon fuel production has been known as one of the most promising strategies for achieving carbon neutrality. Yet, its conversion efficiency remains unsatisfactory mainly due to its severe charge-transfer resistance and slow charge kinetics. Herein, a tunable interfacial charge transfer on an oxygen-vacancies-modified bismuth molybdate nanoflower assembled by 2D nanosheets (BMOVs) and 2D bismuthene composite (Bi/BMOVs) is demonstrated for photocatalytic CO conversion.
View Article and Find Full Text PDFTitanium dioxide (TiO) has been considered as one of the most promising photocatalysts nanomaterials and is being used in a variety of fields of energy and environment under sunlight irradiation via photocatalysis. Highly efficient photocatalytic materials require the design of the proper structure with excellent morphology, interfacial structures, optical and surface properties, etc. Which are the key points to realize effective light-harvesting for photocatalytic applications.
View Article and Find Full Text PDFThis study investigates the dissolution behavior as well as the surface biomineralization in simulated body fluid (SBF) of a paste composed of glycerol (gly) and a bioactive glass in the system CaO-MgO-SiO₂-Na₂O-P₂O₅-CaF₂ (BG). The synthesis of the bioactive glass in an alumina crucible has been shown to significantly affect its bioactivity due to the incorporation of aluminum (ca. 1.
View Article and Find Full Text PDFSurface coatings that can help deter and solve gun crime are described. These nanoengineered coatings have been applied and evaluated on brass cartridge cases, where they increase associative forensic evidence through nanotag donation to the handler and the retention of handler's DNA. In future we expect this approach to be used for other surfaces and conditions.
View Article and Find Full Text PDF