Evaluating the current technical condition and residual life of structures that may have reached or exceeded the end of their design life is a challenging issue in many industrial sectors. This paper focuses on the assessment of the structural integrity of structural elements of a seaport portal crane after operation for about 33 years. Test specimens were extracted from two crane elements, a jib (element A) as the most seriously loaded unit and, for comparison, a boom (element B) as the less loaded one, and machined in two different orientations, longitudinal and transversal.
View Article and Find Full Text PDFIn this paper, the mechanical properties of various zones of the welded joints of a heat-resistant steel 15Kh1M1F in different states (in the initial state, after an operation on the main steam piping of a thermal power plant (TPP) for 23 years) were determined, and the fracture surfaces were analyzed using scanning electron microscopy (SEM) images. The effect of hydrogen electrolytic charging on mechanical behavior and fracture mechanism was also studied. The long-term operation of welds resulted in a higher degradation degree of the weld metal compared to the base one, indicated by the deterioration of mechanical properties: decrease in hardness, strength characteristics, and reduction in area, which was accompanied by an atypical increase in elongation at fracture.
View Article and Find Full Text PDFThis paper presents the research results on the mechanical behavior of the low-carbon rolled steel of a sea portal crane after a 33-year operation depending on the operational stresses and rolling direction in order to assess its serviceability. The tensile properties of steels were investigated using rectangular cross-section specimens with different thicknesses and the same width. Strength indicators were slightly dependent on the considered factors (operational conditions, the cutting direction, and thickness of specimens).
View Article and Find Full Text PDFIn the research, the corrosion and mechanical properties, as well as susceptibility to hydrogen embrittlement, of two casing pipe steels were investigated in order to assess their serviceability in corrosive and hydrogenating environments under operation in oil and gas wells. Two carbon steels with different microstructures were tested: the medium carbon steel (MCS) with bainitic microstructure and the medium-high carbon steel (MHCS) with ferrite-pearlite microstructure. The results showed that the corrosion resistance of the MHCS in CO-containing acid chloride solution, simulating formation water, was significantly lower than that of the MCS, which was associated with microstructure features.
View Article and Find Full Text PDFThis paper summarizes a series of the authors' research in the field of assessing the operational degradation of oil and gas transit pipeline steels. Both mechanical and electrochemical properties of steels are deteriorated after operation, as is their resistance to environmentally-assisted cracking. The characteristics of resistance to brittle fracture and stress corrosion cracking decrease most intensively, which is associated with a development of in-bulk dissipated microdamages of the material.
View Article and Find Full Text PDF