Publications by authors named "Olgac Ergeneman"

Detecting gait phases with wearables unobtrusively and reliably in real-time is important for clinical gait rehabilitation and early diagnosis of neurological diseases. Due to hardware limitations of microcontrollers in wearable devices (e.g.

View Article and Find Full Text PDF

Unlabelled: Motion capture systems are widely accepted as ground-truth for gait analysis and are used for the validation of other gait analysis systems. To date, their reliability and limitations in manual labeling of gait events have not been studied.

Objectives: Evaluate manual labeling uncertainty and introduce a hybrid stride detection and gait-event estimation model for autonomous, long-term, and remote monitoring.

View Article and Find Full Text PDF

We present a system capable of providing visual feedback for ergometer training, allowing detailed analysis and gamification. The presented solution can easily upgrade any existing ergometer device. The system consists of a set of pedals with embedded sensors, readout electronics and wireless communication modules and a tablet device for interaction with the users, which can be mounted on any ergometer, transforming it into a full analytical assessment tool with interactive training capabilities.

View Article and Find Full Text PDF

The deterioration of gait can be used as a biomarker for ageing and neurological diseases. Continuous gait monitoring and analysis are essential for early deficit detection and personalized rehabilitation. The use of mobile and wearable inertial sensor systems for gait monitoring and analysis have been well explored with promising results in the literature.

View Article and Find Full Text PDF

Inspired by the movement of bacteria and other microorganisms, researchers have developed artificial helical micro- and nanorobots that can perform corkscrew locomotion or helical path swimming under external energy actuation. In this paper, for the first time the locomotion of nonhelical multifunctional nanorobots that can swim in helical klinotactic trajectories, similarly to rod-shaped bacteria, under rotating magnetic fields is investigated. These nanorobots consist of a rigid ferromagnetic nickel head connected to a rhodium tail by a flexible hydrogel-based hollow hinge composed of chemically responsive chitosan and alginate multilayers.

View Article and Find Full Text PDF

Fibroblast growth factor 2 (FGF-2), an important paracrine growth factor, binds electrostatically with low micromolar affinity to heparan sulfates present on extracellular matrix proteins. A single molecular analysis served as a basis to decipher the nanomechanical mechanism of the interaction between FGF-2 and the heparan sulfate surrogate, heparin, with a modular atomic force microscope (AFM) design combining magnetic actuators with force measurements at the low force regime (1 × 10 to 1 × 10 pN/s). Unbinding events between FGF-2-heparin complexes were specific and short-lived.

View Article and Find Full Text PDF

We report a novel atomic force microscopy (AFM) technique with dual actuation capabilities using both piezo and magnetic bead actuation for advanced single-molecule force spectroscopy experiments. The experiments are performed by manipulating magnetic microbeads using an electromagnet against a stationary cantilever. Magnetic actuation has been demonstrated before to actuate cantilevers, but here we keep the cantilever stationary and accomplish actuation via free-manipulated microstructures.

View Article and Find Full Text PDF

We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing.

View Article and Find Full Text PDF

Diseases in the ocular posterior segment are a leading cause of blindness. The surgical skills required to treat them are at the limits of human manipulation ability, and involve the risk of permanent retinal damage. Instrument tethering and design limit accessibility within the eye.

View Article and Find Full Text PDF

Ophthalmic wireless microrobots are proposed for minimally invasive vitreoretinal surgery. Devices in the vitreous experience nonlinear mobility as a result of the complex mechanical properties of the vitreous and its interaction with the devices. A microdevice that will minimize its interaction with the macromolecules of the vitreous (i.

View Article and Find Full Text PDF

Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy.

View Article and Find Full Text PDF

Micro- and nanorobots operating in low Reynolds number fluid environments require specialized swimming strategies for efficient locomotion. Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis.

View Article and Find Full Text PDF

The performance of superparamagnetic polymer composite microdevices is highly dependent on the magnetic particle content. While high loading levels are desired for many applications, the UV absorption of these nanoparticles limits the overall thickness of the fabricated microstructures and subsequently their capability of magnetic interaction. The combination of a visible-light-sensitive photoinitiator and particle self-organization is proposed to extend the exposure depth limitation in Epon SU-8 based superparamagnetic polymer composites.

View Article and Find Full Text PDF

Introduction: Ocular microrobots have the potential to change the way in which we treat a variety of diseases at the anterior and the posterior segments of the eye. Wireless manipulation and positioning of drug delivery magnetic millimeter and submillimeter platforms into the eye constitute a potential route for minimally invasive targeted therapy. However, the field is still in its infancy and faces challenges related to the fabrication, control an interaction with complex biological environments.

View Article and Find Full Text PDF

Magnetic tubular implantable micro-robots are batch fabricated by electroforming. These microdevices can be used in targeted drug delivery and minimally invasive surgery for ophthalmologic applications. These tubular shapes are fitted into a 23-gauge needle enabling sutureless injections.

View Article and Find Full Text PDF

We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.

View Article and Find Full Text PDF

We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed.

View Article and Find Full Text PDF

Vitreous humor exhibits complex biomechanical properties and determination of these properties is essential for designing ophthalmic biomedical microdevices. In this paper, the viscoelastic properties of porcine vitreous humor were studied based on ex vivo creep experiments, in which a microrobot was magnetically actuated inside the vitreous. A three-dimensional (3D) finite element (FE) model was proposed to simulate the viscoelastic interaction between the microrobot and porcine vitreous humor.

View Article and Find Full Text PDF

This work presents the fabrication and controlled actuation of swimming microrobots made of a magnetic polymer composite (MPC) consisting of 11-nm-diameter magnetite (Fe3O4) nanoparticles and photocurable resin (SU-8). Two-photon polymerization (TPP) is used to fabricate the magnetic microstructures. The material properties and the cytotoxicity of the MPC with different nanoparticle concentrations are characterized.

View Article and Find Full Text PDF

Purpose: To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye.

Methods: A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil.

View Article and Find Full Text PDF

Microrobots are a promising tool for medical interventions and micromanipulation. In this paper, we explore the concept of using microrobots for microrheology. Untethered magnetically actuated microrobots were used to characterize one of the most complex biofluids, the vitreous humor.

View Article and Find Full Text PDF

A method to functionalize steerable magnetic microdevices through the co-electrodeposition of drug loaded chitosan hydrogels is presented. The characteristics of the polymer matrix have been investigated in terms of fabrication, morphology, drug release and response to different environmental conditions. Modifications of the matrix behavior could be achieved by simple chemical post processing.

View Article and Find Full Text PDF

The surface properties of electrodeposited poly(pyrrole) (Ppy) doped with sodium dodecylbenzenesulphonate (NaDBS) are modified by two methods: addition of poly(ethylene glycol) (PEG) during the electrodeposition and through redox cycling post electrodeposition. X-ray photoelectron spectroscopy (XPS) was used to ascertain PEG incorporation and to analyze the change in the oxidation state of the polymer. Anodic cycling resulted in the formation of micrometer-sized surface cracks which increased the amount of Rhodamine-B dye adsorbed onto the surface, and played a role in decreasing the wettability of the surface.

View Article and Find Full Text PDF

We present a luminescence oxygen sensor integrated with a wireless intraocular microrobot for minimally-invasive diagnosis. This microrobot can be accurately controlled in the intraocular cavity by applying magnetic fields. The microrobot consists of a magnetic body susceptible to magnetic fields and a sensor coating.

View Article and Find Full Text PDF

The synthesis of a porous polysulfone (PSU) coating for use in drug delivery applications is presented. PSU can serve as a functional surface coating for drug delivery vehicles, such as intraocular biomicrorobots. The coatings can be applied using spin coating or dip coating.

View Article and Find Full Text PDF