Publications by authors named "Olga Zaporozhets"

The nucleocapsid protein (NC) is a highly conserved protein that plays key roles in HIV-1 replication through its nucleic acid chaperone properties mediated by its two zinc fingers and basic residues. NC is a promising target for antiviral therapy, particularly to control viral strains resistant to currently available drugs. Since calixarenes with antiviral properties have been described, we explored the ability of calixarene hydroxymethylphosphonic or sulfonic acids to inhibit NC chaperone properties and exhibit antiviral activity.

View Article and Find Full Text PDF

Diverse trifluoromethyl-substituted compounds were synthesized by deoxofluorination of cinnamic and (hetero)aromatic carboxylic acids with sulfur tetrafluoride. The obtained products were used as starting materials in the preparation of novel fluorinated amino acids, anilines, and aliphatic amines - valuable building blocks for medicinal chemistry and agrochemistry.

View Article and Find Full Text PDF

A practical method for the synthesis of functionalized aliphatic trifluoromethyl-substituted derivatives from aliphatic acids is developed. The transformation proceeds with sulfur tetrafluoride in the presence of water as a key additive. Compared to previous methods, the reaction gives products with full retention of stereo- and absolute configuration of chiral centers.

View Article and Find Full Text PDF

A novel smartphone-based optical biomimetic sensor based on free-standing molecularly imprinted polymer (MIP) membranes was developed for rapid and sensitive point-of-care detection of aflatoxin B1. The developed MIP membranes were capable of selective recognition of the target analyte and, at the same time, of generation of a fluorimetric sensor response, which could be registered using the camera of a smartphone and analysed using image analysis. The developed system provides a possibility of synchronous detection of aflatoxin B1 in 96 channels.

View Article and Find Full Text PDF

Nucleic acids are characterized by a variety of dynamically interconverting structures that play a major role in transcriptional and translational regulation as well as recombination and repair. To monitor these interconversions, Förster resonance energy transfer (FRET)-based techniques can be used, but require two fluorophores that are typically large and can alter the DNA/RNA structure and protein binding. Additionally, events that do not alter the donor/acceptor distance and/or angular relationship are frequently left undetected.

View Article and Find Full Text PDF

Nanostructured polymeric membranes for selective recognition of aflatoxin B1 were synthesized in situ and used as highly sensitive recognition elements in the developed fluorescent sensor. Artificial binding sites capable of selective recognition of aflatoxin B1 were formed in the structure of the polymeric membranes using the method of molecular imprinting. A composition of molecularly imprinted polymer (MIP) membranes was optimized using the method of computational modeling.

View Article and Find Full Text PDF

One-pot synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from carboxylic acids and nitriles was optimized to parallel chemistry. The method was validated on a 141 member library; the desired products were recovered with a high success rate and in moderate yields. Practical application of the approach was demonstrated in the synthesis of bioactive compound pifexole and agonists of free fatty acid receptor 1.

View Article and Find Full Text PDF

Thienoguanosine ((th) G) is an isomorphic nucleoside analogue acting as a faithful fluorescent substitute of G, with respectable quantum yield in oligonucleotides. Photophysical analysis of (th) G reveals the existence of two ground-state tautomers with significantly shifted absorption and emission wavelengths, and high quantum yield in buffer. Using (TD)-DFT calculations, the tautomers were identified as the H1 and H3 keto-amino tautomers.

View Article and Find Full Text PDF

UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility.

View Article and Find Full Text PDF

A one-pot parallel synthesis of N(1)-aryl-N(2)-alkyl-substituted oxamides with 2,2,2-trifluoroethyl chlorooxoacetate was developed. The synthesis of a library of 45 oxamides revealed higher efficiency of this reagent over the known ethyl chlorooxoacetate. The reagent was successfully used to prepare the known oxamide-containing HIV entry inhibitors.

View Article and Find Full Text PDF

A simple and cost-effective one-pot parallel synthesis approach to sulfides, sulfoxides, and sulfones from thiourea was elaborated. The method combines two procedures optimized to the parallel synthesis conditions: alkylation of thiourea with alkyl chlorides and mono or full oxidation of in situ generated sulfides with H2O2 or H2O2-(NH4)2MoO4. The experimental set up required commonly used lab equipment: conventional oven and ultrasonic bath; the work up includes filtration or extraction with chloroform.

View Article and Find Full Text PDF

The archetypical fluorescent nucleoside analog, 2-aminopurine (2Ap), has been used in countless assays, though it suffers from very low quantum yield, especially when included in double strands, and from the fact that its residual emission frequently does not represent biologically relevant conformations. To conquer 2Ap's deficiencies, deoxythienoguanosine (d(th)G) was recently developed. Here, steady-state and time-resolved fluorescence spectroscopy was used to compare the ability of 2Ap and d(th)G, to substitute and provide relevant structural and dynamical information on a key G residue in the (-) DNA copy of the HIV-1 primer binding site, (-)PBS, both in its stem loop conformation and in the corresponding (-)/(+)PBS duplex.

View Article and Find Full Text PDF

Fluorescent amino acids bearing environment-sensitive fluorophores are highly valuable tools for site-selective probing of peptide/ligand interactions. Herein, we synthesized a fluorescent l-amino acid bearing the 4'-methoxy-3-hydroxyflavone fluorophore (M3HFaa) that shows dual emission, as a result of an excited state intramolecular proton transfer (ESIPT). The dual emission of M3HFaa was found to be substantially more sensitive to hydration as compared to previous analogues.

View Article and Find Full Text PDF

Quaternary ammonium salts (QAS) of aliphatic (tetradecylammonium nitrate) and heterocyclic (lucigenine) nature immobilized onto silica surface have been proposed as effective anion-exchangers for the adsorptional extraction of silicate in the form of the reduced molybdo-silicic heteropoly anion for the successive determination in the solid phase by using spectrophotometric and visual test techniques. The interface interaction has been investigated. On the basis of the results obtained the new solid-phase spectrophotometric and visual test techniques for the direct silicon determination in the rage of its concentrations 14-400 μg L(-1) have been proposed.

View Article and Find Full Text PDF

Straightforward practical synthetic approaches to 3,4-bis- and 3,4,5-tris(trifluoromethyl)pyrazoles have been developed. The key step of the both syntheses is a transformation of the carboxylic group in a pyrazole core into the trifluoromethyl group by sulfur tetrafluoride. The elaborated synthetic protocols allow gram-scale preparation of the target products.

View Article and Find Full Text PDF

Simple, easy to use and selective method of Al(III) sorption-spectroscopic (SS) determination was proposed. For this purpose, silica modified with tridecyloctadecylammonium chloride(SGII) using adsorption technique and glass slide modified with thin silica-poly(dimethyldiallyl-ammonium chloride) (SGI) composite film obtained by sol-gel technique were worked out. It was shown that lumogallion (LG) easily absorbs on SGI and SGII.

View Article and Find Full Text PDF

Solid-phase spectrophotometric and visual test-methods of fluoride and oxalate determination are proposed. The methods are based on the competitive reactions of ZrOCl2 with methylthymol blue immobilized on silica gel and fluoride or oxalate in solution. Absorbance of the solid-phase reagent at 590 nm decreases with the growth of fluoride and oxalate contents in solution.

View Article and Find Full Text PDF

A new test method for measuring the antioxidant power of herbal products, based on solid-phase spectrophotometry using tetrabenzo-[b,f,j,n][1,5,9,13]-tetraazacyclohexadecine-Cu(II) complex immobilized on silica gel, is proposed. The absorbance of the modified sorbent (lambda(max) = 712 nm) increases proportionally to the total antioxidant activity of the sample solution. The method represents an attractive alternative to the mostly used radical scavenging capacity assays, because they generally require complex long-lasting stages to be carried out.

View Article and Find Full Text PDF

A solid-phase reagent based on 1-(4-adamantyl-2-thiasolylazo)-2-naphthol adsorbed onto silica gel was prepared for Co(II) recovery and preconcentration prior to its sorption-spectroscopic detection. The immobilized reagent was applied to the determination of free cobalt ions in natural water. The solid-phase reagent and chemiluminescent method coupled with membrane filtration, gel-permeation and ion-exchange chromatography were applied to the study of the speciation of iron and cobalt in water from the Dnieper reservoirs and lakes of Kyiv City; their predominant forms were complexes of Fe(III) and Co(II) with dissolved organic matter and fulvic acids play a main role in their complexation.

View Article and Find Full Text PDF