Publications by authors named "Olga Wilhelmi"

Urban centers located on the coast expose some of the most vulnerable populations to the effects of climate change. In addition to the challenges faced by high population densities and interdependent social-ecological systems, there is an increasing demand for resources. Exposing the pinch points that are already sensitive to extreme weather, highlights the urban systems that will be least resilient in the face of climate change.

View Article and Find Full Text PDF

Background: Vulnerable populations across the United States are frequently exposed to extreme heat, which is becoming more intense due to a combination of climate change and urban-induced warming. Extreme heat can be particularly detrimental to the health and well-being of older citizens when it is combined with ozone. Although population-based studies have demonstrated associations between ozone, extreme heat, and human health, few studies focused on the role of social and behavioral factors that increase indoor risk and exposure among older adults.

View Article and Find Full Text PDF

Extreme heat is a major health hazard that is exacerbated by ongoing human-caused climate change. However, how populations perceive the risks of heat in the context of other hazards like COVID-19, and how perceptions vary geographically, are not well understood. Here we present spatially explicit estimates of worry among the U.

View Article and Find Full Text PDF

Individuals in the USA are insufficiently active, increasing their chronic disease risk. Extreme temperatures may reduce physical activity due to thermal discomfort. Cooler climate studies have suggested climate change may have a net positive effect on physical activity, yet research gaps remain for warmer climates and within-day physical activity patterns.

View Article and Find Full Text PDF

Background: Despite the substantial role indoor exposure has played in heat wave-related mortality, few epidemiological studies have examined the health effects of exposure to indoor heat. As a result, knowledge gaps regarding indoor heat-health thresholds, vulnerability, and adaptive capacity persist.

Objective: We evaluated the role of indoor heat exposure on mortality and morbidity among the elderly ( of age) in Houston, Texas.

View Article and Find Full Text PDF

Understanding how climate change and demographic factors may shape future population exposure to viruses such as Zika, dengue, or chikungunya, transmitted by mosquitoes is essential to improving public health preparedness. In this study, we combine projections of cumulative monthly -borne virus transmission risk with spatially explicit population projections for vulnerable demographic groups to explore future county-level population exposure across the conterminous United States. We employ a scenario matrix-combinations of climate scenarios (Representative Concentration Pathways) and socioeconomic scenarios (Shared Socioeconomic Pathways)-to assess the full range of uncertainty in emissions, socioeconomic development, and demographic change.

View Article and Find Full Text PDF

Urban dwellers worldwide are increasingly affected by more frequent and intense extreme temperature events, ongoing urbanization, and changes in socioeconomic conditions. Decades of research have shown that vulnerability is a crucial determinant of heat-related risk and mortality in cities, yet assessments of future urban heat-related challenges have largely overlooked the contribution of changes in socioeconomic conditions to future heat-related risk and mortality. The scenario framework for climate change research, made up of socioeconomic scenarios (Shared Socioeconomic Pathways - SSPs) combined with climate scenarios (Representative Concentration Pathways - RCPs), facilitates the integration of socioeconomic scenarios into climate risks assessments.

View Article and Find Full Text PDF

Urban growth and climate change will exacerbate extreme heat events and air pollution, posing considerable health challenges to urban populations. Although epidemiological studies have shown associations between health outcomes and exposures to ambient air pollution and extreme heat, the degree to which indoor exposures and social and behavioral factors may confound or modify these observed effects remains underexplored. To address this knowledge gap, we explore the linkages between vulnerability science and epidemiological conceptualizations of risk to propose a conceptual and analytical framework for characterizing current and future health risks to air pollution and extreme heat, indoors and outdoors.

View Article and Find Full Text PDF

Urban populations are typically subject to higher outdoor heat exposure than nearby rural areas due to the urban heat island (UHI) effect. Excessive Heat Events (EHEs) further amplify heat stress imposed on city dwellers. Heat exposure largely depends on the spatial and temporal distribution of temperature and population, however, few studies considered their concurrent variations.

View Article and Find Full Text PDF

Mitigation of adverse effects of air pollution requires understanding underlying exposures, such as ambient ozone concentrations. Geostatistical approaches were employed to analyze temporal trends and estimate spatial patterns of summertime ozone concentrations for Houston, Texas, based on hourly ozone observations obtained from the Texas Commission on Environmental Quality. We systematically assess the accuracy of several spatial interpolation methods, comparing inverse distance weighting, simple kriging, ordinary kriging, and universal kriging methods utilizing the hourly ozone observations and meteorological measurements from monitoring sites.

View Article and Find Full Text PDF

Introduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti.

View Article and Find Full Text PDF

Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations.

View Article and Find Full Text PDF

Identifying and characterizing urban vulnerability to heat is a key step in designing intervention strategies to combat negative consequences of extreme heat on human health. This study combines excess non-accidental mortality counts, numerical weather simulations, US Census and parcel data into an assessment of vulnerability to heat in Houston, Texas. Specifically, a hierarchical model with spatially varying coefficients is used to account for differences in vulnerability among census block groups.

View Article and Find Full Text PDF

Extreme heat is an important weather hazard associated with excess mortality and morbidity. We determine the relative importance of heat exposure and the built environment, socioeconomic vulnerability, and neighborhood stability for heat mortality (Philadelphia, PA, USA) or heat distress (Phoenix, AZ, USA), using an ecologic study design. We use spatial Generalized Linear and Mixed Models to account for non-independence (spatial autocorrelation) between neighboring census block groups.

View Article and Find Full Text PDF