Publications by authors named "Olga Waller"

Alloying in group V 2D materials and heterostructures is an effective degree of freedom to tailor and enhance their physical properties. Up to date, black arsenic-phosphorus is the only 2D group V alloy that has been experimentally achieved by exfoliation, leaving all other possible alloys in the realm of theoretical predictions. Herein, the existence of an additional alloy consisting of 2D antimony arsenide (2D-As Sb ) grown by molecular beam epitaxy on group IV semiconductor substrates and graphene is demonstrated.

View Article and Find Full Text PDF

Reducing the material sizes to the nanometer length scale leads to drastic modifications of the propagating lattice excitations (phonons) and their interactions with electrons and magnons. In EuO, a promising material for spintronic applications in which a giant spin-phonon interaction is present, this might imply a reduction of the degree of spin polarization in thin films. Therefore, a comprehensive investigation of the lattice dynamics and spin-phonon interaction in EuO films is necessary for practical applications.

View Article and Find Full Text PDF

Van der Waals (vdW) heterostructures have recently been introduced as versatile building blocks for a variety of novel nanoscale and quantum technologies. Harnessing the unique properties of these heterostructures requires a deep understanding of the involved interfacial interactions and a meticulous control of the growth of 2D materials on weakly interacting surfaces. Although several epitaxial vdW heterostructures have been achieved experimentally, the mechanisms governing their synthesis are still nebulous.

View Article and Find Full Text PDF