Publications by authors named "Olga Volpina"

Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides' susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis.

View Article and Find Full Text PDF

The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules.

View Article and Find Full Text PDF

The oral delivery of peptide pharmaceuticals has long been a fundamental challenge in drug development. A new chemical platform was designed based on branched piperazine-2,5-diones for creating orally available biologically active peptidomimetics. The platform includes a bio-carrier with "built-in" functionally active peptide fragments or bioactive molecules that are covalently attached via linkers.

View Article and Find Full Text PDF

Vaccines are widely used worldwide to prevent and protect from various infections. A variety of modern approaches to developing prophylactic and therapeutic vaccines is growing. In almost all cases, adjuvants are necessary to obtain an effective immune response.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) plays an essential role in Alzheimer's disease (AD). We previously demonstrated that a fragment (60-76) of RAGE improved the memory of olfactory bulbectomized (OBX) and Tg 5 × FAD mice - animal models of AD. The peptide analog (60-76) with protected N- and C-terminal groups was more active than the free peptide in Tg 5 × FAD mice.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) is a signal receptor first shown to be activated by advanced glycation end products, but also by a variety of signal molecules, including pathological advanced oxidation protein products and β-amyloid. However, most of the RAGE activators have multiple intracellular targets, making it difficult to unravel the exact pathway of RAGE activation. Here, we show that the cell-impermeable RAGE fragment sequence (60-76) of the V-domain of the receptor is able to activate RAGE present on the plasma membrane of neurons and, preferentially, astrocytes.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) is considered to contribute to the pathogenesis of Alzheimer's disease (AD), mediating amyloid beta (Aβ) accumulation, mitochondrial damage, and neuroinflammation. Previously, we have synthesized small peptides corresponding to the fragments (60-76) (P1) and (60-62) (P2) of the RAGE extracellular domain, and have shown that administration of P1 fragment but not P2 results in restoration of the spatial memory and decreases the brain Aβ (1-40) level in olfactory bulbectomized (OBX) mice demonstrating main features of Alzheimer's type neurodegeneration. In the present study, we have investigated the supposed mechanism of the therapeutic efficacy of P1 RAGE fragment and compared it to P2 short fragment.

View Article and Find Full Text PDF

In the last three decades, many new cell-penetrating peptides (CPPs) were developed that exhibited enhanced cell selectivity. Thus, we aimed to validate the tumor cell selectivity of peptides from this new generation, namely fragments mini-crotamine and mini-maurocalcine. Both of these peptides are derived from venoms.

View Article and Find Full Text PDF

Receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of Alzheimer's disease. We have previously revealed that RAGE fragment sequence (60-76) and its shortened analogs sequence (60-70) and (60-65) under intranasal insertion were able to restore memory and improve morphological and biochemical state of neurons in the brain of bulbectomized mice developing major AD features. In the current study, we have investigated the ability of RAGE peptide (60-76) and five shortened analogs to bind beta-amyloid (Aβ) 1-40 in an fluorescent titration test and show that all the RAGE fragments apart from one [sequence (65-76)] were able to bind Aβ .

View Article and Find Full Text PDF

Activation of receptor for advanced glycation end products (RAGE) plays an essential role in the development of Alzheimer's disease (AD). It is known that the soluble isoform of the receptor binds to ligands and prevents negative effects of the receptor activation. We proposed that peptide fragments from RAGE prevent negative effects of the receptor activation during AD neurodegeneration.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with marked cholinergic neuron loss and amyloid-β (Aβ) peptide accumulation in the brain. The cytotoxicity in AD is mediated, at least in part, by Aβ binding with the extracellular domain of the p75 neurotrophin receptor (p75NTR), localized predominantly in the membranes of acetylcholine-producing neurons in the basal forebrain. Hypothesizing that an open unstructured loop of p75NTR might be the effective site for Aβ binding, we have immunized both olfactory bulbectomized (OBX) and sham-operated (SO) mice (n = 82 and 49, respectively) with synthetic peptides, structurally similar to different parts of the loops, aiming to block them by specific antibodies.

View Article and Find Full Text PDF

Aggregated amyloid-β causes pathological changes in mixed cultures of neurons and astrocytes such as sporadic cytoplasmic intracellular Ca(2+)-signalling, increase in reactive oxygen species production and cell death. Some of the toxic effects of amyloid-β are mediated through the interaction of the peptide with α7-type nicotinic acetylcholine receptors at the cell surface. Here we demonstrated that affinity purified antibodies to synthetic fragment 173-193 of the α7-subunit of the nAChR are able to protect cells from amyloid-β induced cell death.

View Article and Find Full Text PDF

We studied the ability of four non-conjugated alpha7-subunit fragments of the nicotinic acetylcholine receptor to induce an immune response and to protect memory in olfactory bulbectomized mice which demonstrate abnormalities similar to Alzheimer's disease (AD). Vaccination only with the alpha7-subunit fragment 173-193 was shown to rescue spatial memory, to restore the level of alpha7 acetylcholine receptors in the cortex, and to prevent an increase in the amyloid-beta (Abeta) level in brain tissue in these animals. Antibodies against the peptide 173-193 were revealed in blood serum and cerebrospinal liquid in the bulbectomized mice.

View Article and Find Full Text PDF

Non-neuronal nicotinic acetylcholine receptors (nAChRs) are expressed in the spleen and regulate B lymphocyte propagation and activation. The aim of the present study was to investigate the cellular and physiological effects of antibodies against alpha4(1-209) and alpha7(1-208) nAChR extracellular domains. The antibodies, added in vitro, produced in vivo or injected, specifically bound mouse spleen B lymphocytes.

View Article and Find Full Text PDF

1. Vaccination-induced anti-prion protein antibodies are presently regarded as a promising approach toward treatment of prion diseases. Here, we investigated the ability of five peptides corresponding to three different regions of the bovine prion protein (PrP) to elicit antibodies interfering with PrP(Sc) propagation in prion-infected cells.

View Article and Find Full Text PDF