Publications by authors named "Olga V Nevzglyadova"

Estimating the amyloid level in yeast Saccharomyces, we found out that the red pigment (product of polymerization of aminoimidazole ribotide) accumulating in ade1 and ade2 mutants leads to drop of the amyloid content. We demonstrated in vitro that fibrils of several proteins grown in the presence of the red pigment stop formation at the protofibril stage and form stable aggregates due to coalescence. Also, the red pigment inhibits reactive oxygen species accumulation in cells.

View Article and Find Full Text PDF

The effect of yeast red pigment on amyloid-β (Aβ) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aβ-GFP aggregates.

View Article and Find Full Text PDF

The intensity of amyloid-bound thioflavine T fluorescence was studied in crude lysates of yeast strains carrying mutations in the ADE1 or ADE2 genes and accumulating the red pigment (a result of polymerization of aminoimidazoleribotide), and in white isogenic strains--either adenine prototrophs or carrying mutations at the first stages of purine biosynthesis. We found that the red pigment leads to a drop of amyloid content. This result, along with the data on separation of protein polymers of white and red strains in PAGE, suggests that the red pigment inhibits amyloid fibril formation.

View Article and Find Full Text PDF

A large group of prion-associated proteins was identified in yeast cells using a new approach, comparative analysis of pellet proteins of crude cell lysates in isogenic strains of Saccharomyces cerevisiae differing by their prion composition. Two-dimensional (2D) electrophoresis followed by MALDI analysis of the pellet proteins of [PSI(+)] and [psi(-)] strains after prion elimination by GuHCl and prion transmission by cytoduction permitted identification of ca. 40 proteins whose aggregation state correlated with the change of prion(s) content.

View Article and Find Full Text PDF

It has been shown that defects in cell fusion during mating can trigger programmed cell death in the yeast Saccharomyces cerevisiae. We wished to test whether defects in nuclear migration during cell fusion have the same effect. A partial pedigree analysis of nine kar1 x KAR1 crosses of two different types (four alpha KAR1 x a kar1 and five alpha kar1 x a KAR1 crosses) was carried out, and quantitative estimates of the frequencies of different mother/daughter (m/d) classes were obtained.

View Article and Find Full Text PDF

Heterokaryotic zygotes in yeast provide a unique possibility to study the survival and transmission of two genetically diverse nuclei in one cell. Using partial pedigree analysis, we show that various treatments used to change cytoplasmic hereditary determinants can essentially affect nuclear transmission in yeast heterokaryons. This includes choice of nucleus to enter the first bud and incidence of various classes of mother/daughter pairs demonstrating nuclear degradation patterns in heterokaryotic zygotes.

View Article and Find Full Text PDF

We have found that cells derived from heterokaryons (HK) showing phenotypical traits, coded by the nucleus of one parental strain and by the cytoplasm of the other, may produce mitotic progeny in which the second nucleus is apparently present but not expressed. This 'concealed' nucleus can be forced to expression after growth of these cytoductants on proper selective media. Using a micromanipulator, the buds containing both parental nuclei were isolated in various crosses.

View Article and Find Full Text PDF

The integrative vector pPIC3 for the yeast Pichia pastoris and a cDNA fragment encoding a fusion protein consisting of green fluorescent protein (GFP) and actin 5C of the fruit fly Drosophila melanogaster were used to construct a pPIC3-GFP-actin 5C expression plasmid. The P. pastoris host strain GS115 was transformed with the pPIC3-GFP-actin 5C carrying HIS4 as a selective marker.

View Article and Find Full Text PDF