Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles.
View Article and Find Full Text PDFChanges in the antioxidant protection system of Larix sibirica Ledeb at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. We revealed that the content of peroxide (HO) in the needles is a reliable marker of oxidative stress in the trees under pollution. The crucial role of non-enzymatic components, in particular, proline, phenolic compounds, ascorbic acid, glutathione, in reducing the level of free radicals in the needles cells was found.
View Article and Find Full Text PDFChanges in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%).
View Article and Find Full Text PDFElement contents in assimilation organs of trees are an essential component of a comprehensive forest condition diagnosis. They allow conclusions about the current nutritional status of trees and estimate the main risks for a sustainable forest ecosystem management in the future. The purpose of this research was to study the effect of highly aggressive fluorine-containing emissions from a large aluminum smelter on the nutritional status of coniferous trees Larix sibirica and Pinus sylvestris.
View Article and Find Full Text PDFAir pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages.
View Article and Find Full Text PDFForest surveys were conducted in 2015-2018 on 12 sample plots (SPs), located in different districts of the city of Bratsk, a large industrial center of Eastern Siberia. The ecological state of natural forests preserved within the city's territory was estimated by a set parameters of pine (Pinus sylvestris L.) trees, understory vegetation, moss-and-lichen cover, and soil.
View Article and Find Full Text PDFAnthropogenic contamination with polycyclic aromatic hydrocarbons (PAH) coming from a powerful aluminum smelter has been estimated by the accumulation of these substances (17 substances: phenanthrene, fluoranthene, pyrene, chrysene, acenaphthylene, acenaphthene, anthracene, fluorene, benz[а]anthracene, benz[b]fluoranthene, benz[k]fluoranthene, benz[а]pyrene, benz[е]pyrene, perylene, indeno[1,2,3-c,d]pyrene, benz[g,h,i]perylene, dibenz[a,h]anthracene) in needles of Scots pine (Pinus sylvestris L.) in the residential areas of Bratsk, East Siberia, Russia. It has been found that the total PAH amount reaches the maximum values (982 ng/g) in the needles of trees growing in a residential zone, remote from the smelter up to 10 km (Central Urban District), where more than half of the city's population lives.
View Article and Find Full Text PDFThe study demonstrates the efficiency of using Pinus sylvestris L. as a bio-indicator of polluting substances that enter the environment with the emission of a large aluminum smelter. Recent research has demonstrated that pollution from aluminum smelter emissions covers a vast territory.
View Article and Find Full Text PDF