Incubation of rat lymphocytes with homocysteine (HC) or homocysteic acid (HCA) was found to increase the stationary levels of free radicals in lymphocytes, the effect of both ligands being mediated by ionotropic receptors activated by N-methyl-D-aspactic acid (NMDA), the expression of which on rat lymphocyte membranes was earlier demonstrated. In agreement with these data, increase of free radicals in the lymphocyte cytoplasm is preceded by an increase in the intracellular calcium levels, activation of protein kinase C, nicotinamide adenine dinucleotide phosphate oxidase and/or nitric oxide synthase. Both HC and HCA increase the production of IFN-γ and TNF-α by lymphocytes and antagonist of NMDA receptors; MK-801 prevents this effect.
View Article and Find Full Text PDFN-Methyl-d-aspartate (NMDA)-activated glutamate receptors are expressed in lymphocytes, but their roles have not yet been defined. We show that incubation of human peripheral blood lymphocytes with NMDA resulted in increased intracellular calcium and reactive oxygen species (ROS) levels through effects on NMDA-activated glutamate receptors. In terms of ROS production, T cells were most affected, followed by NK cells, whereas B cell ROS levels were not increased.
View Article and Find Full Text PDFAnalysis of the oxidative modification of plasma and erythrocyte ghost proteins of chronic alcoholic subjects and healthy non-alcoholics has been performed. It was found that increased levels of protein carbonyls in both plasma and erythrocyte ghosts from alcoholic subjects occurred in comparison to the levels found in preparations from non-alcoholics. Plasma proteins from alcoholic subjects did not show evidence of cross-linking, although plasma protein concentration and composition were changed.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2004
RT-PCR demonstrated that ionotropic (iGluR NR1) and metabotropic (mGluR Group III) glutamate receptors are expressed in rodent lymphocytes. Flow cytometry showed that activation of iGluR NR1 by N-methyl-D-aspartate (NMDA) increased intracellular free calcium and reactive oxygen species (ROS) levels and activated caspase-3. The latter effect was attenuated by the NMDA antagonist, 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), by the antioxidant N-acetylcysteine and by cyclosporin A.
View Article and Find Full Text PDF