Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MNs). Neuregulin-1 (NRG1) is a pleiotropic growth factor that has been shown to be potentially valuable for ALS when supplemented by means of viral-mediated gene therapy. However, these results are inconsistent with other reports.
View Article and Find Full Text PDFBesides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles.
View Article and Find Full Text PDFPeripheral nerve section with subsequent disconnection of motor neuron (MN) cell bodies from their skeletal muscle targets leads to a rapid reactive response involving the recruitment and activation of microglia. In addition, the loss of afferent synapses on MNs occurs in concomitance with microglial reaction by a process described as synaptic stripping. However, the way in which postaxotomy-activated microglia adjacent to MNs are involved in synaptic removal is less defined.
View Article and Find Full Text PDFBackground: The cellular mechanisms underlying the age-associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age-related pathophysiological changes in the mouse neuromuscular system.
Methods: Young, adult, middle-aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used.
C-bouton-type cholinergic afferents exert an important function in controlling motoneuron (MN) excitability. During the immunocytochemical analysis of the role of c-Jun in MNs with a monoclonal (clone Y172) antibody against phospho (p)-c-Jun (serine [Ser]63), unexpected labeling was identified in the cell body cytoplasm. As predicted for c-Jun in adult spinal cord, very few, if any MNs exhibited nuclear immunoreactivity with the Y172 antibody; conversely, virtually all MNs displayed strong Y172 immunostaining in cytoplasmic structures scattered throughout the soma and proximal dendrites.
View Article and Find Full Text PDFC-type synaptic boutons (C-boutons) provide cholinergic afferent input to spinal cord motor neurons (MNs), which display an endoplasmic reticulum (ER)-related subsurface cistern (SSC) adjacent to their postsynaptic membrane. A constellation of postsynaptic proteins is clustered at C-boutons, including M2 muscarinic receptors, potassium channels, and σ-1 receptors. In addition, we previously found that neuregulin (NRG)1 is associated with C-boutons at postsynaptic SSCs, whereas its ErbB receptors are located in the presynaptic compartment.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is characterized by the loss of α-motoneurons (MNs) with concomitant muscle denervation. MN excitability and vulnerability to disease are particularly regulated by cholinergic synaptic afferents (C-boutons), in which Sigma-1 receptor (Sig1R) is concentrated. Alterations in Sig1R have been associated with MN degeneration.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by a homozygous deletion or mutation in the survival motor neuron 1 (SMN1) gene that leads to reduced levels of SMN protein resulting in degeneration of motor neurons (MNs). The best known functions of SMN is the biogenesis of spliceosomal snRNPs. Linked to this function, Cajal bodies (CBs) are involved in the assembly of spliceosomal (snRNPs) and nucleolar (snoRNPs) ribonucleoproteins required for pre-mRNA and pre-rRNA processing.
View Article and Find Full Text PDFThe electric activity of lower motor neurons (MNs) appears to play a role in determining cell-vulnerability in MN diseases. MN excitability is modulated by cholinergic inputs through C-type synaptic boutons, which display an endoplasmic reticulum-related subsurface cistern (SSC) adjacent to the postsynaptic membrane. Besides cholinergic molecules, a constellation of proteins involved in different signal-transduction pathways are clustered at C-type synaptic sites (M2 muscarinic receptors, Kv2.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease.
View Article and Find Full Text PDFMotoneuron (MN) cell death is the histopathologic hallmark of spinal muscular atrophy (SMA), although MN loss seems to be a late event. Conversely, disruption of afferent synapses on MNs has been shown to occur early in SMA. Using a mouse model of severe SMA (SMNΔ7), we examined the mechanisms involved in impairment of central synapses.
View Article and Find Full Text PDFC boutons are large, cholinergic, synaptic terminals that arise from local interneurons and specifically contact spinal α-motoneurons (MNs). C boutons characteristically display a postsynaptic specialization consisting of an endoplasmic reticulum-related subsurface cistern (SSC) of unknown function. In the present work, by using confocal microscopy and ultrastructural immunolabeling, we demonstrate that neuregulin-1 (NRG1) accumulates in the SSC of mouse spinal MNs.
View Article and Find Full Text PDFWe recently reported that degenerating motor neurons of superoxide dismutase mutant 1 (SOD1) rodents exhibit immunoreactivity to P2X(4) antibodies. Neurons with strong P2X(4)-like immunoreactivity (P2X(4)-LIR) do not show an apoptotic phenotype and are often associated with microglial cells that display neuronophagic activity. Western blot analysis showed that P2X(4) antibodies recognize not only the P2X(4) adenosine triphosphate receptor protein but also a hitherto unidentified low-molecular weight band.
View Article and Find Full Text PDFGlutamate receptor-mediated excitotoxicity and mitochondrial dysfunction appear to play an important role in motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). In the present study we used an organotypic slice culture of chick embryo spinal cord to explore the responsiveness of mature MNs to different excitotoxic stimuli and mitrochondrial inhibition. We found that, in this system, MNs are highly vulnerable to excitotoxins such as glutamate, N-methyl-D-aspartate (NMDA), and kainate (KA), and that the neuroprotective drug riluzole rescues MNs from KA-mediated excitotoxic death.
View Article and Find Full Text PDFThe distribution of the P2X family of ATP receptors was analyzed in a rat model for amyotrophic lateral sclerosis (ALS) expressing mutated human superoxide dismutase (mSOD1(G93A)). We showed that strong P2X(4) immunoreactivity was selectively associated with degenerating motoneurons (MNs) in spinal cord ventral horn. Degenerating P2X(4)-positive MNs did not display apoptotic features such as chromatin condensation, positive TUNEL reaction, or active caspase 3 immunostaining.
View Article and Find Full Text PDFWe have developed an organotypic culture technique that uses slices of chick embryo spinal cord, in which trophic requirements for long-term survival of mature motoneurons (MNs) were studied. Slices were obtained from E16 chick embryos and maintained for up to 28 days in vitro (DIV) in a basal medium. Under these conditions, most MNs died.
View Article and Find Full Text PDFIn the chick embryo, in ovo application of NMDA from embryonic day (E) 5 to E9 results in selective damage to spinal cord motoneurons (MNs) that undergo a long-lasting degenerative process without immediate cell death. This contrasts with a single application of NMDA on E8, or later, which induces massive necrosis of the whole spinal cord. Chronic MN degeneration after NMDA implies transient incompetence to develop programmed cell death, altered protein processing within secretory pathways, and late activation of autophagy.
View Article and Find Full Text PDFWe previously showed that, in contrast to the acute administration of NMDA, chronic treatment of chick embryos from embryonic day (E) 5 to E9 with this excitotoxin rescues motoneurons (MNs) from programmed cell death. Following this protocol, MNs are also protected against later acute excitotoxic cell death. Previously, we found that MNs treated from E5 to E9 develop long-lasting changes involving vesicular trafficking and other organelle pathology similar to the abnormalities observed in certain chronic neurological diseases including amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDF