Purpose: We describe the fibrotic rim formed in the desmoplastic histopathologic growth pattern (DHGP) of colorectal cancer liver metastasis (CLM) using in situ sequencing (ISS). The origin of the desmoplastic rim is still a matter of debate, and the detailed cellular organization has not yet been fully elucidated. Understanding the biology of the DHGP in CLM can lead to targeted treatment and improve survival.
View Article and Find Full Text PDFBackground: Opting for or against the administration of adjuvant chemotherapy in therapeutic management of stage II colon cancer remains challenging. Several studies report few survival benefits for patients treated with adjuvant therapy and additionally revealing potential side effects of overtreatment, including unnecessary exposure to chemotherapy-induced toxicities and reduced quality of life. Predictive biomarkers are urgently needed.
View Article and Find Full Text PDFDespite the discovery of the oxygen-sensitive regulation of HIFα by the von Hippel-Lindau (VHL) protein, the mechanisms underlying the complex genotype/phenotype correlations in VHL disease remain unknown. Some germline mutations cause familial pheochromocytoma and encode proteins that preserve their ability to down-regulate HIFα. While type 1, 2A, and 2B mutants are defective in regulating HIFα, type 2C mutants encode proteins that preserve their ability to down-regulate HIFα.
View Article and Find Full Text PDFTarget engagement is a key concept in drug discovery and its direct measurement can provide a quantitative understanding of drug efficacy and/or toxicity. Failure to demonstrate target occupancy in relevant cells and tissues has been recognised as a contributing factor to the low success rate of clinical drug development. Several techniques are emerging to quantify target engagement in cells; however, measurements remain challenging, mainly due to technical limitations.
View Article and Find Full Text PDFNeuroblastoma is a pediatric cancer characterized by variable outcomes ranging from spontaneous regression to life-threatening progression. High-risk neuroblastoma patients receive myeloablative chemotherapy with hematopoietic stem-cell transplant followed by adjuvant retinoid differentiation treatment. However, the overall survival remains low; hence, there is an urgent need for alternative therapeutic approaches.
View Article and Find Full Text PDFWe recently identified pathogenic β mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted β in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bβ is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA.
View Article and Find Full Text PDFKIF1Bβ is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1Bβ activates the Ca(2+)-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca(2+) signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC), the major lung cancer subtype, is characterized by high resistance to chemotherapy. Here we demonstrate that Tudor staphylococcal nuclease (SND1 or TSN) is overexpressed in NSCLC cell lines and tissues, and is important for maintaining NSCLC chemoresistance.
View Article and Find Full Text PDFBackground: The critical role of microRNAs (miRNAs) in the global control of gene expression in the heart has recently been postulated; however, the mechanisms of miRNA regulation in cardiac pathology are not clear.
Objective: To evaluate the levels of miR-1, miR-208a and miR-29a expressed in neonatal rat cardiomyocytes during anoxia-reoxygenation (AR).
Methods: Reverse transcription coupled with real-time polymerase chain reaction was used to evaluate the level of mature and immature miRNAs in cardiomyocyte culture during AR.
Recent studies underline the important role of microRNAs (miRNA) in the development of lung cancer. The main regulators of miRNA biogenesis are the ribonucleases Drosha, Dicer and Ago2. Here the role of core proteins of miRNA biogenesis machinery in the response of human non-small and small cell lung carcinoma cell lines to treatment with ionizing radiation was assessed.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising drug for the treatment of tumors; however, a number of cancer cells are resistant to this cytokine. Among the mechanisms of resistance of small cell lung carcinomas (SCLCs) to TRAIL is the lack of caspase-8 expression. Although methylation of the caspase-8 promoter has been suggested as the main mechanism of caspase-8 silencing, we showed that reduction of the enzymes involved in DNA methylation, DNA methyltransferases (DNMT) 1, 3a and 3b, was not sufficient to significantly restore caspase-8 expression in SCLC cells, signifying that other mechanisms are involved in caspase-8 silencing.
View Article and Find Full Text PDFBackground: TRAIL is considered as a promising anti-cancer agent, because of its ability to induce apoptosis in cancer but not in most normal cells. However, growing evidence exist that many cancer cells are resistant to its apoptotic effects. SCLC is a typical example of tumor entity where TRAIL monotherapy is not efficient.
View Article and Find Full Text PDFIt is well known that 5-lipoxygenase derivates of arachidonic acid play an important pathogenic role during myocardial infarction. Therefore, the gene encoding arachidonate 5-lipoxygenase (ALOX5) appears to be an attractive target for RNA interference (RNAi) application. In experiments on cultivated cardiomyocytes with anoxia-reoxygenation (AR) and in vivo using rat model of heart ischemia-reperfusion (IR) we determined influence of ALOX5 silencing on myocardial cell death.
View Article and Find Full Text PDFBackground: Recent data suggest that low concentrations of proteasome inhibitors (PIs) are cytoprotective in models of ischemia-reperfusion injury, but the underlying mechanisms of this effect still remain unclear.
Aim: To investigate the effect of 100 nM of clasto-lactacystin beta-lactone on cell death and gene expression in neonatal rat cardiomyocytes exposed to anoxia-reoxygenation.
Methods: Fluorescent microscopy and real-time polymerase chain reaction were used to detect different types of cell death and gene expression, respectively, in neonatal rat cardiomyocyte cultures exposed to anoxia-reoxygenation.