Publications by authors named "Olga Stadnyuk"

Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions.

View Article and Find Full Text PDF

Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host.

View Article and Find Full Text PDF

Bacterial pathogens often carry multiple prophages and other phage-derived elements within their genome, some of which can produce viral particles in response to stress. Listeria monocytogenes 10403S harbors two phage elements in its chromosome, both of which can trigger bacterial lysis under stress: an active prophage (ϕ10403S) that promotes the virulence of its host and can produce infective virions, and a locus encoding phage tail-like bacteriocins. Here, we show that the two phage elements are co-regulated, with the bacteriocin locus controlling the induction of the prophage and thus its activity as a virulence-associated molecular switch.

View Article and Find Full Text PDF

Bacteriophages are ubiquitous and affect most facets of life, from evolution of bacteria, through ecology and global biochemical cycling to human health. The interactions between phages and bacteria often lead to biological novelty and an important milestone in this process is the ability of phages to regulate their host's behavior. In this review article, we will focus on newly reported cases that demonstrate how temperate phages regulate bacterial gene expression and behavior in a variety of bacterial species, pathogenic and environmental.

View Article and Find Full Text PDF