The kidney has a sophisticated vascular structure that performs the unique function of filtering blood and managing blood pressure. Tubuloglomerular feedback is an intra-nephron negative feedback mechanism stabilizing single-nephron blood flow, glomerular filtration rate, and tubular flow rate, which is exhibited as self-sustained oscillations in single-nephron blood flow. We report the application of multi-scale laser speckle imaging to monitor global blood flow changes across the kidney surface (low zoom) and local changes in individual microvessels (high zoom) in normotensive and spontaneously hypertensive rats in vivo.
View Article and Find Full Text PDFTwo novel treatments for diabetic kidney disease have emerged after decades with little progression. Both agents were developed for improved glycemic control in patients with type-2 diabetes. However, large clinical trials showed renoprotective effects beyond their ability to lower plasma glucose levels, body weight, and blood pressure.
View Article and Find Full Text PDFThe renal vasculature, acting as a resource distribution network, plays an important role in both the physiology and pathophysiology of the kidney. However, no imaging techniques allow an assessment of the structure and function of the renal vasculature due to limited spatial and temporal resolution. To develop realistic computer simulations of renal function, and to develop new image-based diagnostic methods based on artificial intelligence, it is necessary to have a realistic full-scale model of the renal vasculature.
View Article and Find Full Text PDFThe tubuloglomerular feedback (TGF) mechanism modulates renal hemodynamics and glomerular filtration rate in individual nephrons. Our study aimed to evaluate the TGF-induced vascular responses by inhibiting Na-K-2Cl co-transporters and sodium-glucose co-transporters in rats. We assessed cortical hemodynamics with high-resolution laser speckle contrast imaging, which enabled the evaluation of blood flow in individual microvessels and analysis of their dynamical patterns in the time-frequency domain.
View Article and Find Full Text PDFThe balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria.
View Article and Find Full Text PDFInternephron interaction is fundamental for kidney function. Earlier studies have shown that nephrons signal to each other, synchronize over short distances, and potentially form large synchronized clusters. Such clusters would play an important role in renal autoregulation, but due to the technological limitations, their presence is yet to be confirmed.
View Article and Find Full Text PDFLaser speckle contrast imaging is a robust and versatile blood flow imaging tool in basic and clinical research for its relatively simple construction and ease of customization. One of its key features is the scalability of the imaged field of view. With minimal changes to the system or analysis, laser speckle contrast imaging allows for high-resolution blood flow imaging through cranial windows or low-resolution perfusion visualization of perfusion over large areas, e.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a promising tool that can be used in the detection of molecular changes triggered by disease development. Cardiovascular diseases (CVDs) are caused by multiple pathologies originating at the cellular level. The identification of these deteriorations can provide a better understanding of CVD mechanisms, and the monitoring of the identified molecular changes can be employed in the development of novel biosensor tools for early diagnostics.
View Article and Find Full Text PDFA host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN therapeutically in different disease settings.
View Article and Find Full Text PDFTubuloglomerular feedback and the myogenic mechanism form an ensemble in renal afferent arterioles that regulate single-nephron blood flow and glomerular filtration. Each mechanism generates a self-sustained oscillation, the mechanisms interact, and the oscillations synchronize. The synchronization generates a bimodal electrical signal in the arteriolar wall that propagates retrograde to a vascular node, where it meets similar electrical signals from other nephrons.
View Article and Find Full Text PDFDairy products exhibit several physical properties that are crucial to define whether we like the food or not: firmness, creaminess, thickness, or lightness. Viscosity changes the flow properties of food and influences the appearance and the consistency of a product; this control variable is important in most production stages-manufacture, processing, and storage. Viscosity of heterogeneous products at a given temperature depends on its composition and physical state of its substances.
View Article and Find Full Text PDFBlood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice. We demonstrate that the pairs of Raman peaks at 1355 and1375 cm (symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm and 1602 and 1638 cm (vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount of oxyhemoglobin in venules, arterioles, and capillaries.
View Article and Find Full Text PDFWe investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2017
Among solid organs, the kidney's vascular network stands out, because each nephron has two distinct capillary structures in series and because tubuloglomerular feedback, one of the mechanisms responsible for blood flow autoregulation, is specific to renal tubules. Tubuloglomerular feedback and the myogenic mechanism, acting jointly, autoregulate single-nephron blood flow. Each generates a self-sustained periodic oscillation and an oscillating electrical signal that propagates upstream along arterioles.
View Article and Find Full Text PDFVasomotion is spontaneous or induced rhythmic changes in vascular tone or vessel diameter that lead to rhythmic changes in flow. While the vascular research community debates the physiological and pathophysiological consequence of vasomotion, there is a great need for experimental techniques that can address the role and dynamical properties of vasomotion in vivo. We apply laser speckle imaging to study spontaneous and drug induced vasomotion in retinal network of anesthetized rats.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
March 2017
Intrarenal drug infusion plays an important role in renal experimental research. Laminar flow of the blood can cause streaming and inhomogeneous intrarenal distribution of infused drugs. We suggest a simple method to achieve a homogeneous intravascular distribution of drugs infused into the renal artery of anesthetized rats.
View Article and Find Full Text PDFThrough regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons.
View Article and Find Full Text PDFLaser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical masking of a vessel position and measurements of it's diameter from laser speckle images.
View Article and Find Full Text PDFStudies of vascular responses are usually performed on isolated vessels or on single vessels in vivo. This allows for precise measurements of diameter or blood flow. However, dynamical responses of the whole microvascular network are difficult to access experimentally.
View Article and Find Full Text PDFLaminar flow in arteries causes streaming and uneven distribution of infused agents within the organ. This may lead to misinterpretation of experimental results and affect treatment outcomes. We monitor dynamical changes of superficial cortical blood flow in the rat kidney following different routes of administration of the vasoconstrictor angiotensin II.
View Article and Find Full Text PDFSelective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria.
View Article and Find Full Text PDFMechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full-field laser speckle flowmetry provides a real-time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications.
View Article and Find Full Text PDFFull-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies.
View Article and Find Full Text PDFWe developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb).
View Article and Find Full Text PDFTubuloglomerular feedback (TGF) and the myogenic mechanism combine in each nephron to regulate blood flow and glomerular filtration rate. Both mechanisms are nonlinear, generate self-sustained oscillations, and interact as their signals converge on arteriolar smooth muscle, forming a regulatory ensemble. Ensembles may synchronize.
View Article and Find Full Text PDF