Introduction: Abdominal Aortic Aneurysm (AAA) is a highly morbid condition and is the 11th leading cause of death in the United States. Treatment options are limited to operative interventions, with minimal non-operative options. Prior literature has demonstrated a benefit to the use of mesenchymal stem cells (MSCs) in attenuating AAA formation.
View Article and Find Full Text PDFHigh mortality rates in ovarian cancer have been linked to recurrence, metastasis, and chemoresistant disease, which are known to involve not only genetic changes but also epigenetic aberrations. In ovarian cancer, adipose-derived stem cells from the omentum (O-ASCs) play a crucial role in supporting the tumor and its tumorigenic microenvironment, further propagating epigenetic abnormalities and dissemination of the disease. Epigallocatechin gallate (EGCG), a DNA methyltransferase inhibitor derived from green tea, and Indole-3-carbinol (I3C), a histone deacetylase inhibitor from cruciferous vegetables, carry promising effects in reprograming aberrant epigenetic modifications in cancer.
View Article and Find Full Text PDFMultiple myeloma (MM) is a plasma cell malignancy that is accompanied by hypercalcemia, renal failure, anemia, and lytic bone lesions. Heparanase (HPSE) plays an important role in supporting and promoting myeloma progression, maintenance of plasma cell stemness, and resistance to therapy. Previous studies identified functional single nucleotide polymorphisms (SNPs) located in the HPSE gene.
View Article and Find Full Text PDFBackground: We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization.
Methods: In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized.
Results: Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.
Introduction: The current treatment paradigm of abdominal aortic aneurysms (AAA) focuses on observing patients until their disease reaches certain thresholds for intervention, with no preceding treatment available. There is an opportunity to develop novel therapies to prevent further aneurysmal growth and decrease the risk of a highly morbid rupture. We used a porcine model of aortic dilation to assess the ability of human adipose-derived mesenchymal stem cells (MSCs) to attenuate aortic dilation.
View Article and Find Full Text PDFDespite the high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, its full capacity is currently limited by the generation of dysfunctional CAR T cells. Senescent or exhausted CAR T cells possess poor targeting and effector functions, as well as impaired cell proliferation and persistence in vivo. Strategies to detect, prevent or reverse T cell exhaustion are therefore required in order to enhance the effectiveness of CAR T immunotherapy.
View Article and Find Full Text PDFEpigenetic therapy augments neoadjuvant chemotherapy (NACT) in breast cancer and may aid post-surgical wound healing affected by NACT. Our study investigates: (1) The cytotoxicity of classic paclitaxel chemotherapy on triple negative breast cancer (TNBC) independently and in combination with epigenetic drugs. (2) The sustainable inhibition of breast cancer regrowth following paclitaxel and epigenetic therapies.
View Article and Find Full Text PDFHeparanase is an endo-β-glucuronidase that is best known for its pro-cancerous effects but is also implicated in the pathogenesis of various viruses. Activation of heparanase is a common strategy to increase viral spread and trigger the subsequent inflammatory cascade. Using a Single Nucleotide Polymorphisms (SNP)-associated approach we identified enhancer and insulator regions that regulate HPSE expression.
View Article and Find Full Text PDFRecurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and prematurely shortens patients' lives. Recurrent ovarian cancer is characterized by high tumor heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and rodent models. Unfortunately, this success has not translated well into clinical trials.
View Article and Find Full Text PDFThe HPSE gene encodes heparanase (HPSE), a key player in cancer, inflammation, and autoimmunity. We have previously identified a strong HPSE gene enhancer involved in self-regulation of heparanase by negative feedback exerted in a functional rs4693608 single-nucleotide polymorphism (SNP) dependent manner. In the present study, we analyzed the HPSE gene insulator region, located in intron 9 and containing rs4426765, rs28649799, and rs4364254 SNPs.
View Article and Find Full Text PDFThe success of cannabinoids with chronic neuropathic pain and anxiety has been demonstrated in a multitude of studies. With the high availability of a non-intoxicating compound, cannabidiol (CBD), an over-the-counter medication, has generated heightened interest in its use in the field of oncology. This review focuses on the widespread therapeutic potential of CBD with regard to enhanced wound healing, lowered toxicity profiles of chemotherapeutics, and augmented antitumorigenic effects.
View Article and Find Full Text PDFOvarian cancer is uncommon in relation to other women's cancer, however, it is associated with a disproportionate number of deaths due to women's cancer. According to the National Institute of Health, only 1.2% of new cancer diagnoses in the United States are attributed to ovarian cancer, yet it is the fifth leading cause of cancer death in women and is responsible for 2.
View Article and Find Full Text PDFStem cell therapy promotes tissue regeneration and wound healing. Efforts have been made to prime stem cells to enhance their regenerative abilities. Certain marijuana components, namely the non-psychoactive cannabidiol (CBD) and psychoactive tetrahydrocannabinol (THC), are defined as immunomodulators.
View Article and Find Full Text PDFJ Hematol Oncol
November 2020
Background: Chemoresistance remains a major treatment obstacle in multiple myeloma (MM). Novel new therapies are thus in need. Transient Receptor Potential Vanilloid type 1 (TRPV1) is a calcium-permeable ion channel that has been demonstrated to be expressed in solid tumors.
View Article and Find Full Text PDFWe evaluated the association between germline genetic variants located within the 3'-untranlsated region (polymorphic 3'UTR, ie, p3UTR) of candidate genes involved in multiple myeloma (MM). We performed a case-control study within the International Multiple Myeloma rESEarch (IMMEnSE) consortium, consisting of 3056 MM patients and 1960 controls recruited from eight countries. We selected p3UTR of six genes known to act in different pathways relevant in MM pathogenesis, namely KRAS (rs12587 and rs7973623), VEGFA (rs10434), SPP1 (rs1126772), IRF4 (rs12211228) and IL10 (rs3024496).
View Article and Find Full Text PDFTHC is the main psychoactive compound found in marijuana. A number of studies over the past few decades, both in vitro and in vivo, have demonstrated that THC down-regulates the inflammatory process through various mechanisms. Similar findings have been demonstrated with CBD, the other major bioactive component of marijuana.
View Article and Find Full Text PDFSingle Nucleotide Polymorphisms (SNPs) is the substitution of a single nucleotide, stably inherited, highly abundant, and distributed throughout the genome. Up today 9746 SNPs were found in the HPSE gene. During 12 years 21 SNPs were analyzed in normal and pathological samples.
View Article and Find Full Text PDFObjective: To examine the cytotoxicity of epigenetic drugs independently and in combination with chemotherapy on ovarian cancer cells Caov-3, and to investigate their ability to acquire chemoresistance in omental microenvironments and whether epigenetic drugs can counteract this chemoresistance.
Methods: A pilot study was conducted in Cooper University Hospital, NJ, USA from August 1 to October 31, 2017, among women undergoing surgeries for uterine and ovarian cancer. Cytotoxicity assays using IC values of epigenetic drugs and paclitaxel and cisplatin were performed on Caov-3.
Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate (HS) proteoglycans and releases HS-bound cytokines, chemokines, and bioactive growth-promoting factors. Heparanase plays an important role in the nucleus as part of an active chromatin complex. Our previous studies revealed that rs4693608 correlates with heparanase levels and increased risk of acute and extensive chronic graft vs.
View Article and Find Full Text PDFPolyclonal anti-human thymocyte globulins (ATG) have been recently shown to significantly reduce the incidence of graft versus host disease (GVHD) post allogeneic stem cell transplantation (HSCT) from both sibling and unrelated donors. Induction of regulatory T cells has been suggested as one of the possible mechanisms. The aim of current study was to further characterize the T cell populations induced by ATG treatment and to delineate the mechanisms involved in ATG-induced tolerance.
View Article and Find Full Text PDFMultiple myeloma (MM) cells specifically attract peripheral-blood monocytes, while interaction of MM with bone marrow stromal cells (BMSCs) significantly increased monocyte recruitment (p<0.01). The CXCL12 chemokine, produced by both the MM and BMSCs, was found to be a critical regulator of monocyte migration.
View Article and Find Full Text PDFHeparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of HSPGs, important structural and functional components of the ECM. Cleavage of HS leads to loss of the structural integrity of the ECM and release of HS-bound cytokines, chemokines, and bioactive angiogenic- and growth-promoting factors. Our previous study revealed a highly significant correlation of HPSE gene SNPs rs4693608 and rs4364254 and their combination with the risk of developing GVHD.
View Article and Find Full Text PDF