Publications by authors named "Olga Oestrup"

Genomic screening of cancer patients for predisposing variants is traditionally based on age at onset, family history and type of cancer. Whereas the clinical guidelines have proven efficient in identifying families exhibiting classical attributes of hereditary cancer, the frequency of patients with alternative presentations is unclear. We identified and characterized germline variants in 636 patients with advanced solid cancer using whole exome sequencing.

View Article and Find Full Text PDF

Background: Selecting patients for early clinical trials is a challenging process and clinicians lack sufficient tools to predict overall survival (OS). Circulating cell-free DNA (cfDNA) has recently been shown to be a promising prognostic biomarker. The aim of this study was to investigate whether baseline cfDNA measurement could improve the prognostic information of the Royal Marsden Hospital (RMH) score.

View Article and Find Full Text PDF

Purpose: We evaluated the clinical benefit of tumor molecular profiling to select treatment in the phase I setting.

Experimental Design: Patients with advanced solid cancers and exhausted treatment options referred to a phase I unit were included in a prospective, single-center, single-arm open-label study (NCT02290522). Tumor biopsies were obtained for comprehensive genomic analysis including whole-exome sequencing and RNA sequencing.

View Article and Find Full Text PDF

Purpose: We evaluated longitudinal tracking of BRAF V600E in circulating cell-free DNA (cfDNA) as a marker of treatment response to BRAF inhibitor (BRAFi) combination therapies in non-melanoma solid tumors included in the Copenhagen Prospective Personalized Oncology (CoPPO) program.

Experimental Design: Patients with BRAF V600E-mutated tumors were treated with combination therapies including BRAFi. Quantification of mutant cfDNA from plasma was determined and correlated to clinical outcomes.

View Article and Find Full Text PDF

After fertilization, lineage specification is governed by a complicated molecular network in which permissiveness and repression of expression of pluripotency- and differentiation-associated genes are regulated by epigenetic modifications. DNA methylation operates as a very stable repressive mark in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs).

View Article and Find Full Text PDF