Purpose: To compare the effect of two linacs designs on fetal dose sparing on a pregnant patient, including estimation of the fetal dose, and the effect of a lead apron.
Methods: A patient with a high-grade sarcoma located in the right knee/lower thigh was prescribed 51 Gy (1.7 Gy/Fx) with a simultaneous-integrated-boost (SIB) of 60 Gy to a smaller volume, starting in the 26th gestational week.
Purpose: To investigate the relationship between normal brain exposure in LINAC-based single-isocenter multitarget multifraction stereotactic radiosurgery or stereotactic radiation therapy (SRT) and the number or volume of treated brain metastases, especially for high numbers of metastases.
Methods And Materials: A cohort of 44 SRT patients with 709 brain metastases was studied. Renormalizing to a uniform prescription of 27 Gy in 3 fractions, normal brain dose volume indices, including V23 Gy (volume receiving >23 Gy), V18 Gy (volume receiving >18 Gy), and mean dose, were evaluated on these plans against the number and the total volume of targets for each plan.
Radiotherapy, a crucial technique in cancer therapy, has traditionally relied on the premise of largely unchanging patient anatomy during the treatment course and encompassing uncertainties by target margins. This review introduces adaptive radiotherapy (ART), a notable innovation that addresses anatomy changes and optimizes the therapeutic ratio. ART utilizes advanced imaging techniques such as CT, MRI, and PET to modify the treatment plan based on observed anatomical changes and even biological changes during the course of treatment.
View Article and Find Full Text PDFPurpose: Accurate dose calculation is important in both target and low dose normal tissue regions for brain stereotactic radiosurgery (SRS). In this study, we aim to evaluate the dosimetric accuracy of the two advanced dose calculation algorithms for brain SRS.
Methods: Retrospective clinical case study and phantom study were performed.